Графический метод решеия задачи линейного программирования

Автор работы: Пользователь скрыл имя, 27 Января 2014 в 21:20, курсовая работа

Краткое описание

История возникновения исследования операций уходит корнями в далекое прошлое. Так, еще в 1885 году Фредерик Тейлор пришел к выводу о возможности применения научного анализа в сфере производства. Проблема, рассмотренная им, на первый взгляд, кажется тривиальной: "как оптимальным образом организовать работу землекопов?" Казалось бы, ответ давно известен - "Бери больше, кидай дальше, отдыхай, пока летит". Однако применение математического аппарата показало несостоятельность этого принципа. Оказалось, что оптимальный вес груза, позволяющий максимизировать количество перебрасываемого материала (при разумной экономии рабочей силы) значительно меньше того, что может поднять человек при максимальной нагрузке.
В настоящее время в рамках исследования операций сформированы отдельные самостоятельные направления - линейное программирование, выпуклое программирование, теория игр, теория массового обслуживания, и др.

Содержание

ВВЕДЕНИЕ
2

1. Математическое программирование
4
1.2 Кратко о линейном программировании
4
1.3 Основная задача линейного программирования
7
2. ГРАФИЧЕСКИЙ МЕТОД РЕШЕНИЯ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
9
2.1 Теоретическое введение
9
2.2 Методика решения задач ЛП графическим методом
11
3.ПРИМЕНЕНИЕ ГРАФИЧЕСКОГО МЕТОДА РЕШЕНИЯ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ НА ПРАКТИКЕ
13
3.1 Экономическая постановка задачи линейного программирования
13
3.2 Построение математической модели
13
3.3 Нахождение оптимального решения задачи с помощью линейного метода.
4. Понятие двойственной задачи.
15

17
4. Понятие двойственной задачи
ЗАКЛЮЧЕНИЕ
20
Список литературы

Прикрепленные файлы: 1 файл

Графический метод решения задачи линейного программирования.doc

— 345.00 Кб (Скачать документ)

Содержание.

 

ВВЕДЕНИЕ

2

   

1. Математическое программирование

4

1.2 Кратко о  линейном программировании

4

1.3 Основная задача линейного программирования

7

2. ГРАФИЧЕСКИЙ  МЕТОД РЕШЕНИЯ ЗАДАЧИ ЛИНЕЙНОГО  ПРОГРАММИРОВАНИЯ

9

2.1 Теоретическое  введение

9

2.2 Методика решения задач ЛП графическим методом

11

3.ПРИМЕНЕНИЕ ГРАФИЧЕСКОГО МЕТОДА РЕШЕНИЯ ЗАДАЧИ  ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ НА ПРАКТИКЕ

13

3.1 Экономическая  постановка задачи линейного  программирования

13

3.2 Построение  математической модели 

13

3.3 Нахождение оптимального решения задачи с помощью линейного метода.

4. Понятие двойственной  задачи.         

15

 

17

4. Понятие двойственной задачи

ЗАКЛЮЧЕНИЕ

20

Список литературы

22


 

ВВЕДЕНИЕ

 

Исследование  операций – это математическая дисциплина, занимающаяся разработкой и применением методов нахождения наилучших решений в различных областях человеческой деятельности.

Под операциями обычно понимают целенаправленные управляемые  процессы. Природа их может быть различной - это могут быть военные  действия, производственные процессы, коммерческие мероприятия, административные решения, и т.д.  Что интересно - операции эти (совершенно несхожие по своей природе) могут быть описаны одними и теми же математическими моделями, более того, анализ этих моделей позволяет лучше понять суть того или иного явления и даже предсказать его дальнейшее развитие. Мир, как оказалось, устроен необычайно компактно (в информационном смысле), поскольку одна и та же информационная схема реализуется в самых разных физических (и не только физических) проявлениях. В кибернетике это называется термином "изоморфизм моделей".

Если бы не изоморфизм моделей, для каждой конкретной ситуации пришлось бы отыскивать собственный, уникальный метод решения, и исследование операций как научное направление не сформировалось бы. К счастью, дело обстоит иначе. Благодаря наличию общих закономерностей в развитии самых разных систем возможно исследование их математическими методами. Исследование операций как математический инструментарий, поддерживающий процесс принятия решений в самых разных областях человеческой деятельности, как совокупность средств, позволяющих обеспечить лицо, принимающее решение, необходимой количественной информацией, полученной научными методами, сформировалось на стыке математики и разнообразных социально-экономических дисциплин. Свой вклад в его становление внесли представители самых различных областей науки.

 История  возникновения исследования операций  уходит корнями в далекое прошлое.  Так, еще в 1885 году Фредерик  Тейлор пришел к выводу о возможности применения научного анализа в сфере производства. Проблема, рассмотренная им, на первый взгляд, кажется тривиальной: "как оптимальным образом организовать работу землекопов?" Казалось бы, ответ давно известен - "Бери больше, кидай дальше, отдыхай, пока летит". Однако применение математического аппарата показало несостоятельность этого принципа. Оказалось, что оптимальный вес груза, позволяющий максимизировать количество перебрасываемого материала (при разумной экономии рабочей силы) значительно меньше того, что может поднять человек при максимальной нагрузке.

В настоящее  время в рамках исследования операций сформированы отдельные самостоятельные  направления - линейное программирование, выпуклое программирование, теория игр, теория массового обслуживания, и др.

 

1. Математическое программирование.

 

Математическое  программирование  ("планирование") – это раздел математики, занимающийся разработкой методов отыскания экстремальных значений функции, на аргументы которой наложены ограничения. Методы математического программирования используются в экономических, организационных, военных и др. системах для решения так называемых распределительных задач. Распределительные задачи (РЗ) возникают в случае, когда имеющихся в наличии ресурсов не хватает для выполнения каждой из намеченных работ эффективным образом и необходимо наилучшим образом распределить ресурсы по работам в соответствии с выбранным критерием оптимальности.

 

1.2 Кратко о линейном программировании.

 

Что же такое  линейное программирование? Это один из первых и наиболее подробно изученных разделов математического программирования. Именно линейное программирование явилось тем разделом, с которого начала развиваться сама дисциплина «математическое программирование». Термин «программирование» в названии дисциплины ничего общего с термином «программирование (т.е. составление программ) для ЭВМ» не имеет, так как дисциплина «линейное программирование» возникла еще до того времени, когда ЭВМ стали широко применяться при решении математических, инженерных, экономических и других задач. Термин «линейное программирование» возник в результате неточного перевода английского «linear programming». Одно из значений слова «programming» - составление планов, планирование. Следовательно, правильным переводом «linear programming» было бы не «линейное программирование», а «линейное планирование», что более точно отражает содержание дисциплины. Однако, термин линейное программирование, нелинейное программирование и т.д. в нашей литературе стали общепринятыми.

Итак, линейное программирование возникло после Второй мировой войны и стал быстро развиваться, привлекая внимание математиков, экономистов  и инженеров благодаря возможности  широкого практического применения, а так же математической «стройности».  
       Можно сказать, что линейное программирование применимо для построения математических моделей тех процессов, в основу которых может быть положена гипотеза линейного представления реального мира: экономических задач, задач управления и планирования, оптимального размещения оборудования и пр.

Задачами линейного  программирования называются задачи, в которых линейны как целевая  функция, так и ограничения в  виде равенств и неравенств. Кратко задачу линейного программирования можно сформулировать следующим  образом: найти вектор значений переменных, доставляющих экстремум линейной целевой функции при m ограничениях в виде линейных равенств или неравенств.  

Линейное программирование представляет собой наиболее часто  используемый метод оптимизации. К  числу задач линейного программирования можно отнести задачи:

- рационального использования сырья и материалов; задачи оптимизации раскроя;

- оптимизации производственной программы предприятий;

- оптимального размещения и концентрации производства;

- составления оптимального плана перевозок, работы транспорта;

- управления производственными запасами;

- и многие другие, принадлежащие сфере оптимального планирования.

Так, по оценкам американских экспертов, около 75% от общего числа  применяемых оптимизационных методов  приходится на линейное программирование. Около четверти машинного времени, затраченного в последние годы на проведение научных исследований, было отведено решению задач линейного программирования и их многочисленных модификаций.

Первые постановки задач  линейного программирования были сформулированы известным советским математиком Л.В.Канторовичем, которому за эти работы была присуждена Нобелевская премия по экономике.

В настоящее время линейное программирование является одним из наиболее употребительных аппаратов  математической теории оптимального принятия решения.

Итак, линейное программирование - это наука о методах исследования и отыскания наибольших и наименьших значений линейной функции, на неизвестные которой наложены линейные ограничения. Таким образом, задачи линейного программирования относятся к задачам на условный экстремум функции.

 

1.3 Основная задача  линейного программирования

 

Основная  задача линейного программирования (ОЗЛП) ставится следующим образом: Имеется ряд переменных . Требуется найти такие их неотрицательные значения, которые удовлетворяли бы системе линейных уравнений:

 
                                 {1.1} 

и, кроме того, обращали бы в минимум линейную целевую функцию (ЦФ)

Очевидно, случай, когда ЦФ нужно обратить не в минимум, а в максимум, легко сводится к предыдущему, если изменить знак функции и рассмотреть вместо нее функцию

 

Допустимым решением ОЗЛП называют любую совокупность переменных , удовлетворяющую уравнениям (1.1).

Оптимальным решением называют то из допустимых решений, при котором ЦФ обращается в минимум.

На практике ограничения  в задаче линейного программирования часто заданы не уравнениями, а неравенствами. В этом случае можно перейти к основной задаче линейного программирования.

Рассмотрим задачу линейного  программирования с ограничениями-неравенствами, которые имеют вид

                                          {1.2}

и являются линейно-независимыми. Последнее означает, никакое из них нельзя представить в виде линейной комбинации других. Требуется найти , которые удовлетворяют неравенствам и обращают в минимум

   

Введём уравнения:

                                              {1.3} 
 
где - добавочные переменные, которые также как и являются неотрицательными.

Таким образом, имеем общую задачу линейного  программирования - найти неотрицательные  , чтобы они удовлетворяли системе уравнений (1.3) и обращали в минимум .

Коэффициенты  в формуле (1.3) перед  равны нулю.

 

2. ГРАФИЧЕСКИЙ МЕТОД РЕШЕНИЯ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

 

2.1. Теоретическое  введение

 

Графический метод  довольно прост и нагляден для  решения задач линейного программирования с двумя переменными. Он основан  на геометрическом представлении допустимых решений и ЦФ задачи.

Каждое из неравенств задачи линейного программирования (1.2) определяет на координатной плоскости некоторую полуплоскость (рис.2.1), а система неравенств в целом – пересечение соответствующих плоскостей. Множество точек пересечения данных полуплоскостей называется областью допустимых решений (ОДР). ОДР всегда представляет собой выпуклую фигуру, т.е. обладающую следующим свойством: если две точки А и В принадлежат этой фигуре, то и весь отрезок АВ принадлежит ей. ОДР графически может быть представлена выпуклым многоугольником, неограниченной выпуклой многоугольной областью, отрезком, лучом, одной точкой. В случае несовместности системы ограничений задачи (1.2) ОДР является пустым множеством.

Все вышесказанное относится  и к случаю, когда система ограничений (1.2) включает равенства, поскольку любое  равенство

можно представить в виде системы двух неравенств (см. рис.2.1)

ЦФ  при фиксированном значении определяет на плоскости прямую линию . Изменяя значения L, мы получим семейство параллельных прямых, называемых линиями уровня.

Это связано с тем, что  изменение значения L повлечет изменение  лишь длины отрезка, отсекаемого  линией уровня на оси  (начальная ордината), а угловой коэффициент прямой останется постоянным (см.рис.2.1). Поэтому для решения будет достаточно построить одну из линий уровня, произвольно выбрав значение L.

Вектор  с координатами из коэффициентов ЦФ при и перпендикулярен к каждой из линий уровня (см. рис.2.1). Направление вектора совпадает с направлением возрастания ЦФ, что является важным моментом для решения задач. Направление убывания ЦФ противоположно направлению вектора .

Суть графического метода заключается в следующем. По направлению (против направления) вектора  в ОДР производится поиск оптимальной точки . Оптимальной считается точка, через которую проходит линия уровня , соответствующая наибольшему (наименьшему) значению функции . Оптимальное решение всегда находится на границе ОДР, например, в последней вершине многоугольника ОДР, через которую пройдет целевая прямая, или на всей его стороне.

При поиске оптимального решения  задач линейного программирования возможны следующие ситуации: существует единственное решение задачи; существует бесконечное множество решений (альтернативный оптиум); ЦФ не ограничена; область допустимых решений – единственная точка; задача не имеет решений.

Рисунок 2.1 Геометрическая интерпретация  ограничений и ЦФ задачи.

 

2.2. Методика решения  задач ЛП графическим методом.

 

I. В ограничениях задачи (1.2) заменить знаки неравенств знаками точных равенств и построить соответствующие прямые.

II. Найти и заштриховать полуплоскости, разрешенные каждым из ограничений-неравенств задачи (1.2). Для этого нужно подставить в конкретное неравенство координаты какой-либо точки [например, (0;0)], и проверить истинность полученного неравенства.

Если  неравенство истинное,

то    надо заштриховать полуплоскость, содержащую данную точку;

иначе (неравенство ложное) надо заштриховать полуплоскость, не содержащую данную точку.

Поскольку и должны быть неотрицательными, то их допустимые значения всегда будут находиться выше оси и правее оси , т.е. в I-м квадранте.

Ограничения-равенства  разрешают только те точки, которые  лежат на соответствующей прямой. Поэтому необходимо выделить на графике такие прямые.

Информация о работе Графический метод решеия задачи линейного программирования