Автор работы: Пользователь скрыл имя, 09 Декабря 2013 в 21:49, курсовая работа
Динамическое программирование (ДП) определяет оптимальное решение n-мерной задачи путем ее декомпозиции на n этапов, каждый из которых представляет собой подзадачу относительно одной переменной. Вычислительное преимущество такого подхода состоит в том, что мы занимаемся решением одномерных оптимизационных задач подзадач вместо большой n-мерной задачи.
Фундаментальным принципом ДП, составляющим основу декомпозиции задачи на этапы, является оптимальность. Так как природа каждого этапа решения зависит от конкретной оптимизационной задачи, ДП не предлагает вычислительных алгоритмов непосредственно для каждого этапа. Вычислительные аспекты решения оптимизационных подзадач на каждом этапе проектируются и реализуются по отдельности (но это не исключает того, что может быть применен единый алгоритм для всех этапов).
Если учесть, что решение
подзадачи размером не более трех
не требует вообще никаких действий,
то рассматривая описанные варианты
1–3, следует предпочесть вариант
3, где нужно выбрать некоторое k
Но известно, что, помимо исходной
задачи существует лишь n(n−4) различных
подзадач, которые в любом случае необходимо
решить. Значит в приведенном анализе
что-то явно не совсем верно. Очевидно,
что совсем не все подзадачи отличаются
между собой, если действовать рекурсивно,
как приведено выше, то у нас возникают
ситуации, когда одни и те же ситуации
приходится решать несколько раз. Именно
это подсказывает нам эффективный способ
вычисления триангуляции. Прежде всего,
вычисления удобно организовать в виде
таблицы. Назначим стоимость Cis триангуляции Sis
В соответствии с перечисленными
выше вариантами действий 1–3 при определении
подзадач формула вычисления Cis при s ≥
Cis = min1≤k≤s−2 {Ci,k+1 + Ci+k,s−k
где D(vp, vq) — это длина хорды между вершинами vp и vq, если vp и vq не являются смежными вершинами многоугольника; D(vp, vq) равняется 0, если являются смежными вершинами.
Отметим, что таким образом,
мы вычислим всю таблицу, и определим
стоимость минимальной
Задача о загрузке
Задача о загрузке — это задача о рациональной загрузке судна (самолета, автомашины, и т. п.), которое имеет ограничения по объему или грузоподъемности. Каждый помещенный на судно груз приносит определенную прибыль. Задача состоит в том, чтобы определении загрузки, такими грузами которые приносят наибольшую прибыль.
Отметим также, что данная задача известна как задача о рюкзаке, в который турист должен определить наиболее ценные предметы, подлежащие загрузке в рюкзак. Формализуем нашу задачу. Пусть W — грузоподъемность нашего судна и есть в наличии n наименований предметов, которые подлежат загрузке. Пусть mi — количество предметов i-го наименования, ri — прибыль, которую приносит один загруженный предмет i-го наименования, wi — вес одного предмета i-го наименования. Тогда общая задача имеет вид следующей целочисленной задачи линейного программирования.
Максимизировать Z = r1m1 + r2m
w1m1 + w2m2 + … + wnmn ≤ W,
m1, m2, …, mn ≥ 0.
Рассмотрим подход, несколько иной, чем был приведен выше. При рассмотрении каждой конкретной задачи обратим внимание три основных элемента модели динамического программирования..
Из перечисленных выше элементов понятие состояние, как правило, представляется весьма сложным для восприятия. Определение этого понятия может меняться в зависимости от конкретной ситуации. При рассмотрении каждого приложения полезно ответить на следующие вопросы.
В приведенной задаче о загрузке три элемента модели динамического программирования определяются следующим образом.
Пусть fi(xi) — максимальная суммарная прибыль от этапов i, i+1, …, n при заданном состоянии xi. Определим рекуррентное уравнение с помощью следующей двухшаговой процедуры.
fi(xi) = max {rimi + fi+1(xi+1)}, i =
где max берется по всем
mi = 0, 1, …, [W⁄wi] и xi = 0, 1, …, W,
где fn+1(xn+1) ≡ 0.
fi(xi) = max {rimi + fi+1(xi−wimi)}, i
где max берется по всем
mi = 0, 1, …, [W⁄wi] и xi = 0, 1, …, W.
Задача о загрузке является типичным представителем задачи распределения ресурсов, в которой ограниченный ресурс распределяется между конечным числом видов (экономической) деятельности. В таких моделях определения состояния на каждом этапе будет аналогично приведенному для задачи о загрузке : состоянием на этапе i является суммарное количество ресурса, распределяемого на этапах i, i+1, …, n.
Заключение
Здесь были рассмотрены некоторые
примеры детерминированных
Литература
Камышан Андрей
Маша / 2009-05-27 21:27:59
Хочу сказать спасибо
автору за такую статью. Кучу сайтов,
посвященных информатике, пересмотрела,
но нигде такой доступной
Виталий / 2010-07-08 12:21:22
Похоже, что в задаче о загрузке есть ошибка:
"... По определению x(i+1) − x(i) представляет собой вес, загруженный на этапе i, т. е. x(i+1) − x(i) = w(i)m(i) или x(i+1) = x(i) − w(i)m(i). Тогда рекуррентное уравнение приобретает следующий вид.
fi(x(i)) = max {r(i)m(i) + f(i+1)(x(i)−w(i)m(i))}, i = 1, 2, ?, n,..."
Если x(i+1) − x(i) = w(i)m(i), то логично, чтобы x(i+1) = x(i) + w(i)m(i), а не x(i+1) = x(i) − w(i)m(i).
Миша / 2011-11-14 00:35:37
Автору спасибо за статью. Маша, ты не читала Окулова? Это очень толковая книга и там про lcs хорошо написано