Анализ цены на рынке золота

Автор работы: Пользователь скрыл имя, 22 Декабря 2013 в 16:56, курсовая работа

Краткое описание

Цель данной работы – проанализировать и исследовать поведение цены на рынке золота в зависимости от макроэкономических факторов. В настоящее время, сразу после всемирного кризиса, который так или иначе отразился не только на большинстве стран, но и на валютных, фондовых и товарно-сырьевых биржах, эта проблема становится все более и более актуальной. Общеизвестно, что в периоды экономической нестабильности, инвесторы, трейдеры и нередко обычные люди, начинают скупать золото, считая его «убежищем» из-за крайней ограниченности в природе.

Содержание

Введение 3
Сбор данных 4
Анализ данных 5
Парный корреляционный анализ 5
Анализ мультиколлинеарности факторов 7
Построение регрессионной модели 9
Выбор функциональной зависимости 10
Анализ качества модели регрессии: 13
Анализ остатков 13
Анализ качества коэффициентов регрессии 17
Проверка качества модели в целом 18
Заключение 19
Список источников: 21

Прикрепленные файлы: 1 файл

kursach.docx

— 267.68 Кб (Скачать документ)

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ МЕЖДУНАРОДНЫХ ОТНОШЕНИЙ (УНИВЕРСИТЕТ)

 
 
 
 
 
Кафедра эконометрики и математических методов 
анализа экономики 
 
 
 
 
 

Курсовая работа

на тему

«Анализ цены на рынке золота» 
 
 
 
 
 
 
 
 
Научный руководитель:

доцент Артамонов Н.В 
 
 
 
 
 
 
 
 

Москва, 2011 

Оглавление 

Введение 3

Сбор данных 4

Анализ данных 5

Парный корреляционный анализ 5

Анализ мультиколлинеарности факторов 7

Построение регрессионной модели 9

Выбор функциональной зависимости 10

Анализ качества модели регрессии: 13

Анализ остатков 13

Анализ качества коэффициентов регрессии 17

Проверка качества модели в целом 18

Заключение 19

Список источников: 21

Приложение 22

 

 

Введение

Регрессионные модели лежат  в основе экономико-математического  моделирования, они широко используются для описания макро- и микроэкономических процессов, а также для их прогнозирования. Регрессионная модель отражает зависимость переменной от определенных факторов, а также описывает ее с помощью математических уравнений.

Цель данной работы – проанализировать и исследовать поведение цены на рынке золота в зависимости  от макроэкономических факторов. В  настоящее время, сразу после  всемирного кризиса, который так  или иначе отразился не только на большинстве стран, но и на валютных, фондовых и товарно-сырьевых биржах, эта проблема становится все более и более актуальной. Общеизвестно, что в периоды экономической нестабильности, инвесторы, трейдеры и нередко обычные люди, начинают скупать золото, считая его «убежищем» из-за крайней ограниченности в природе.

В работе мы будем анализировать  цену золота в зависимости от следующих  факторов: котировки EUR/USD, индекс доллара USDX, уровень инфляции в США, индекс DJI, доходность казначейских облигации США со сроком погашения 10 лет (10Y T-Notes), наличие программы количественного смягчения (QE), большинство какой партии представлено в обоих палатах Конгресса США.

 

Сбор  данных

Изначальная выборка данной работы – 51 (далее, исходя из определенных соображений, выборка будет увеличена вдвое) наблюдение, это поквартальные данные по факторам, используемым в модели. Данные отражают период с сентября 1998 года до марта 2011 года (с декабря 1985 до марта 2011). Информация для данной работы взята из авторитетных статистических источников, которые можно найти в заключении работы.

Выбранные нами факторы, которые  мы сочли наиболее важными для  анализа цены:

    1. Котировки EUR/USD – eur
    2. Индекс доллара – usdx
    3. Индекс Доу Джонса – dji
    4. Доходность 10Y T-Note – t10
    5. Уровень инфляции США – inf
    6. Наличие программы количественного смягчения – qe (фиктивная переменная, если qe=1, значит, что в этот временной промежуток реализовывалась программа QE1 или QE2, если qe=0, то данная программа по поддержанию ликвидности не применялась)
    7. Демократически партия в конгрессе – dem (если dem=0, значит, у власти в тот период находились республиканцы)

Большинство из факторов, которые  мы взяли, имеют связь с экономикой США и, так или иначе, отражают её состояние. Такой выбор вполне оправдан, так как существует очевидная зависимость между курсом доллара и ценой на золото. Обычно при укреплении американской валюты цена на золото имеет тенденцию к понижению и наоборот, это связано с тем, что цена на золото выражается в долларах США.

Анализ  данных

Парный корреляционный анализ

Корреляционный  анализ – это метод математической статистики, используемый для изучения, исследования взаимосвязи между (генеральными) экономическими показателями на основе их наблюдаемых статистических (выборочных) аналогов. Парный корреляционный анализ – изучение взаимосвязи между  двумя экономическими показателями, описывающими свойства однотипных объектов из некоторой совокупности.1

Рис.1

Посмотрим результаты, получившиеся после проведения корреляционного анализа.

Рис. 2

Рис. 3

На рисунке 1, 2 и 3 представлены графики, построенные для линейной, полулогарифмической и логлинейной моделей соответсвенно. Графики мало отличаются, поэтому с помощью визуального анализа определить приемлемый вид модели для построения не получится.

На графиках выше мы наблюдаем  достаточно четкую линейную зависимость  между ценой на золото и курсом евро, а так же обратную зависимость  между золотом и индексом доллара. Также визуально можно провести прямую и на графиках зависимости стоимости золота от десятилетних облигаций, хотя разброс тут наблюдается больший.

Графики зависимости цены на золото от инфляции на всех трех моделях  демонстрируют очень большой  разброс, а логарифмическая модель в частности показывает, что при  одной и той же инфляции золото может иметь как высокую цену, так и относительно низкую. Следовательно, можно сделать предварительное предположение о том, что в модели этот фактор будет незначим.

Анализ мультиколлинеарности факторов

При построении модели каждый из факторов может влиять друг на друга, такой эффект называется мультиколлинеарность. Если существует взаимосвязь между факторами, то становится тяжело определить влияние каждого фактора по отдельности.

Итак, мультиколлинеарность будем анализировать с помощью матрицы корреляции факторов, показанной в таблице 1.

 

 

EUR

USDX

DJI

INF

T10

QE

DEM

EUR

1.000000

-0.984184

0.372025

-0.029345

-0.619524

0.433261

0.622707

USDX

-0.984184

1.000000

-0.379359

0.023091

0.603790

-0.405142

-0.583315

DJI

0.372025

-0.379359

1.000000

0.481129

0.244963

-0.139750

-0.024250

INF

-0.029345

0.023091

0.481129

1.000000

0.389837

-0.531972

-0.311156

T10

-0.619524

0.603790

0.244963

0.389837

1.000000

-0.510025

-0.682033

QE

0.433261

-0.405142

-0.139750

-0.531972

-0.510025

1.000000

0.737447

DEM

0.622707

-0.583315

-0.024250

-0.311156

-0.682033

0.737447

1.000000


Таблица 1

Согласно матрице корреляций наблюдается мултиколлинеарность, то есть в нашей модели есть факторы, тесно связанные друг с другом. Желтые ячейки отражают значения более 0.6, где 0.6 пороговое значение, при превышении которого наблюдается зависимость факторов.

Таким образом, наблюдается  почти стопроцентная обратная корреляция между курсом евро и индексом доллара, корреляция между курсом евро и 10-ти летними облигациями, а так же факторами, отражающими наличие  программы количественного смягчения  и власть демократической партии.

Существуют достаточно противоречивые подходы к устранению эффекта, описанного выше, всего подходов три:

    • Изменить спецификацию
    • Увеличить выборку
    • Исключить фактор из модели
    • Оставить «как есть»

Чтобы улучшить качество модели и устранить мультиколлинеарность, мы решили пойти на следующие шаги:

    1. увеличить выборку вдвое, на наш взгляд должна пропасть столь высокая корреляция между факторами dem и qe, поскольку их корреляция наблюдается лишь из-за того, что кризис случился во время правления демократов, и ФРС именно в это время пришлось задействовать программу QE. Следовательно, если увеличить выборку, то корреляция должна уменьшиться.
    2. исключить фактор EUR/USD, а оставить только индекс доллара. Убираем фактор именно курса евро из тех соображений, что данных по евро за более ранний период просто не существует.

С этого момента и далее  мы используем выборку в 102 единицы. Действительно, после увеличение выборки  корреляция между факторами qe и dem существенно снизилась, значение корреляции равно 0,51.

Построение  регрессионной модели

Регрессионная модель цены золота будет выглядеть следующим образом:

 

С помощью пакета EViews были получены следующие значения коэффициентов:

GOLD = 967.496795806 - 7.33169377368*USDX + 0.0155192164947*DJI + 23.2383761785*INF - 8.767444357*T10 + 427.380477251*QE + 131.917788723*DEM

Коэффициенты интерпретируются следующим образом:

    • При повышении индекса доллара на один пункт, цена золота в среднем понижается на 7,33 доллара
    • При повышении индекса Доу Джонс на один пункт, цена золота в среднем вырастает на 0,015 доллара
    • При повышении инфляции на один процентный пункт, цена золота в среднем вырастает на 23,24 доллара
    • При повышении доходности десятилетних облигаций США на один процентный пункт, цена золота в среднем понижается на 8,76 долларов
    • При проведении политики количественного смягчения цена золота вырастает на 427,38 долларов
    • При приходе к власти в США демократов цена золота вырастает на 131,92 доллара

Выбор функциональной зависимости

Протестируем гипотезу о линейной спецификации модели регрессии с помощью RESET-теста. Нулевая гипотеза предполагает, что модель имеет линейную спецификацию. Для тестирования этой гипотезы составим вспомогательную модель регрессии:

 

 

 

С помощью пакета EViews были получены p-значения для коэффициентов и – 0,0002 и 0,0557 соответственно. При их сравнении с уровнем значимости 5% делаем вывод, что коэффициент значим (p-значение < ). Следовательно, отвергается гипотеза и отвергается линейная спецификация модели.

 
 
 

Ramsey RESET Test:

   
         
         

F-statistic

30.92115

Prob. F(2,93)

0.0000

Log likelihood ratio

52.00039

Prob. Chi-Square(2)

0.0000

         
         
         

Test Equation:

     

Dependent Variable: GOLD

   

Method: Least Squares

   

Date: 05/12/11   Time: 18:48

   

Sample: 1 102

     

Included observations: 102

   
         
         

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

         
         

C

-1424.597

577.8322

-2.465416

0.0155

DEM

-393.2137

101.0266

-3.892181

0.0002

DJI

-0.043379

0.011708

-3.704967

0.0004

INF

-78.71512

20.38147

-3.862093

0.0002

QE

-1927.347

326.9666

-5.894631

0.0000

T10

23.53572

17.18617

1.369457

0.1742

USDX

15.81335

4.963561

3.185889

0.0020

FITTED^2

0.004872

0.001260

3.867724

0.0002

FITTED^3

-1.38E-06

7.15E-07

-1.937458

0.0557

         
         

R-squared

0.834194

Mean dependent var

478.0263

Adjusted R-squared

0.819931

S.D. dependent var

261.1625

S.E. of regression

110.8230

Akaike info criterion

12.33784

Sum squared resid

1142201.

Schwarz criterion

12.56946

Log likelihood

-620.2300

Hannan-Quinn criter.

12.43163

F-statistic

58.48713

Durbin-Watson stat

0.710325

Prob(F-statistic)

0.000000

     
         
         

 

Сравним теперь полулогарифмическую и логлинейную модели. Сравнение будем проводить по критериям Акаике, Шварца и скорректированного R-квадрат. Предпочтение будет отдано модели с меньшими коэффициентами Акаике и Шварца, и большим коэффициентом R-квадрат. Замечание: для возможности введения логлинейной модели отрицательные значения инфляции были заменены на близкие к нулю положительные.  
 
 
 
 

 

Dependent Variable: LOG(GOLD)

   

Method: Least Squares

   

Date: 05/10/11   Time: 20:15

   

Sample: 1 102

     

Included observations: 102

   
         
         

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

         
         

C

7.443604

0.336033

22.15142

0.0000

DEM

0.136509

0.069457

1.965385

0.0523

DJI

1.51E-05

1.23E-05

1.225491

0.2234

INF

0.038837

0.025197

1.541350

0.1266

QE

0.606240

0.106118

5.712916

0.0000

T10

-0.021231

0.030507

-0.695939

0.4882

USDX

-0.016685

0.002484

-6.717206

0.0000

         
         

R-squared

0.725011

Mean dependent var

6.068408

Adjusted R-squared

0.707643

S.D. dependent var

0.413896

S.E. of regression

0.223794

Akaike info criterion

-0.090027

Sum squared resid

4.757938

Schwarz criterion

0.090119

Log likelihood

11.59135

Hannan-Quinn criter.

-0.017080

F-statistic

41.74464

Durbin-Watson stat

0.368271

Prob(F-statistic)

0.000000

     
         
         

Информация о работе Анализ цены на рынке золота