Автор работы: Пользователь скрыл имя, 23 Января 2013 в 20:14, курсовая работа
Модели сетевого планирования и управления (модели СПУ) предназначены для планирования и управления сложными комплексами работ (проектами), направленными на достижение определенной цели в заданные сроки (строительство, разработка и производство сложных объектов и др.).
Сетевой моделью (СМ) называется экономико-математическая модель, отражающая весь комплекс работ и событий, связанных с реализацией проекта в их логической и технологической последовательности и связи.
Путём в сетевом графике называется любая последовательность работ (стрелок), связывающая какие-либо два события. При этом пути, связывающие исходное и завершающее события сети, считаются полными, а все другие пути – неполными. Каждый путь характеризуется своей продолжительностью (длительностью), которая равна сумме продолжительностей составляющих его работ.
Наиболее простым и
наглядным методом расчёта
В верхнем секторе ставится порядковый номер события.
Путём последовательного перехода от исходного события, ранний срок свершения которого равен нулю, к завершающему событию рассчитываются ранние сроки его свершения. Ранний срок наступления события представляет собой минимальный из возможных моментов наступления должного события при заданной продолжительности работ и начальном моменте.
|
При расчетах для сетевой модели определяются следующие характеристики ее элементов.
1. Ранний срок свершения события tp(0) = 0, tР(j) =тахi{tр(i) + t(ij)}, j=1—N характеризует самый ранний срок завершения всех путей, в него входящих. Этот показатель определяется «прямым ходом» по графу модели, начиная с начального события сети.
2. Поздний срок свершения события tп(N) = tр(N), tп (i) = minj {(tп(j)–t(ij)}, i=1—(N-1) характеризует самый поздний срок, после которого остается ровно столько времени, сколько требуется для завершения всех путей, следующих за этим событием. Этот показатель определяется «обратным ходом» по графу модели, начиная с завершающего события сети.
3. Резерв времени события R(T) = tп(i) – tр(i) показывает, на какой максимальный срок можно задержать наступление этого события, не вызывая при этом увеличения срока выполнения всего комплекса работ.
Резервы времени для событий на критическом пути равны нулю, R(i) = 0.
• полный резерв – максимальный запас времени, на который можно отсрочить начало или увеличить длительность работы без увеличения длительности критического пути. Работы на критическом пути не имеют полного резерва времени;
• частный резерв – часть полного резерва, на которую можно увеличить продолжительность работы, не изменив позднего срока ее начального события;
Замечания. Работы, лежащие на критическом пути, резервов времени не имеют. Если на критическом пути Lкр лежит начальное событие i работы (i,j), то Rп(i,j)=Rl(i,j). Если на Lкр лежит конечное событие j работы (i,j), то Rп(i,j)=Rc(i,j). Если на Lкр лежат и событие i, и событие j работы (i,j), а сама работа не принадлежит критическому пути, то Rп(i,j)=Rc(i,j)=Rп(i,j)
Продолжительность пути равна сумме продолжительностей составляющих ее работ.
Резерв времени пути равен разности между длинами критического пути и рассматриваемого пути.
Резерв времени пути
показывает, на сколько может увеличиться
продолжительность работ, составляющих
данный путь, без изменения
В сетевой модели можно выделить так называемый критический путь. Критический путь Lкр состоит из работ (i,j), у которых полный резерв времени равен нулю Rп(i,j)=0, кроме этого, резерв времени R(i) всех событий i на критическом равен 0. Длина критического пути определяет величину наиболее длинного пути от начального до конечного события сети и равна . Заметим, что в проекте может быть несколько критических путей.
3. Коэффициент напряженности работ
Для оценки трудности своевременного выполнения работ служит коэффициент напряженности работ:
где t(Lтах(i,j)) – продолжительность максимального пути проходящего через работу (i,j);
t’кр – продолжительность отрезка пути Lтах(i,j), совпадающего с критическим путем.
Видно, что Кн(i,j) < 1. Чем ближе Кн(i,j) к 1, тем сложнее выполнить данную работу в установленный срок. Напряженность критических работ полагается равной 1. Все работы сетевой модели могут быть разделены на 3 группы: напряженные (Кн(i,j) > 0,8), надкритические (0,6 < Кн(i,j) < 0,8) и резервные (Кн(i,j) < 0,6).
В результате перераспределения
ресурсов стараются максимально
уменьшить общую
Пример задачи взят с сайта http://www.allbest.ru/
На предприятии осуществляется реконструкция цеха. Известна средняя продолжительность выполнения отдельных работ (таблица 1.1). Среднеквадратическое отклонение продолжительности выполнения работ по всем работам равно одному дню.
Необходимо:
Таблица 1.1
Код работ |
1-2 |
2-3 |
3-8 |
1-4 |
4-6 |
4-7 |
6-7 |
7-8 |
1-5 |
5-8 |
2-4 |
5-6 |
Продолжительность (дни) |
2 |
4 |
4 |
6 |
5 |
4 |
6 |
5 |
14 |
3 |
1 |
0 |
Определяем ранние сроки наступления j-го события сетевого графика:
Определяем поздние сроки свершения i- го события :
Определим резерв времени i-го события сетевого графика.
Определим критический путь сетевого графика , т.е. полный путь, имеющий наибольшую продолжительность и характеризующийся тем, что все принадлежности ему события не имеют резервов времени (они равны нулю).
Рассмотрим все пути, проходящие через вершины сетевого графика с нулевыми резервами времени:
1) 1-5-6-7-8. Его продолжительность равна:
(дней).
2) 1-5-8. Его продолжительность равна:
(дней).
Таким образом, критическим путем является путь 1-5-6-7-8 и его продолжительность составляет 25 дней.
Перечень работ, принадлежащих критическому пути, представлен в таблице 1.2.
Таблица 1.2
Коды работ |
Продолжительность работы (дни) |
1-5 |
14 |
5-6 |
0 |
6-7 |
6 |
7-8 |
5 |
Найдём полный резерв времени работ.
Сетевой график выполнения работ по реконструкции цеха представлен на рисунке 1.3.
Рисунок 1.3
Ответ: Таким образом, критический путем является путь 1-5-6-7-8 и его длительность (продолжительность) составляет 25 дней.
Информация о работе Задачи сетевого планирования и управления