Системный анализ в экономике

Автор работы: Пользователь скрыл имя, 26 Апреля 2014 в 23:14, контрольная работа

Краткое описание

Важным свойством экономической системы является наличие структуры, ее можно
рассматривать как способ взаимосвязи, взаимодействия образующих систему элементов,
ее внутреннюю организацию, обеспечивающую целостность. Структура есть нечто
устойчивое, сохраняющее качественную определенность экономической системы на
протяжении конкретного, иногда длительного времени. Однако это не означает, что
структура постоянна и неизменна. Напротив, она подвижна и изменчива, модифицируется
вместе с системой под влиянием преобразований в ее элементах, изменений в их
функциях, отношениях системы с внешней средой и других факторов [8, с.27

Прикрепленные файлы: 1 файл

СИСТЕМНЫЙ АНАЛИЗ В ЭКОНОМИКЕ.doc

— 289.00 Кб (Скачать документ)

Сценарий предусматривает не только содержательные рассуждения, помогающие не упустить детали, которые невозможно учесть в формальной модели (в этом собственно и заключается основная роль сценария), но и содержит, как правило, результаты количественного технико-экономического или статистического анализа с предварительными выводами. Группа экспертов, подготавливающая сценарий, пользуется обычно правом получения необходимых справок от предприятий и организаций, необходимых консультаций.

На практике по типу сценариев разрабатывались прогнозы в отраслях промышленности. Разновидностью сценариев можно считать комплексные программы научно-техническою прогресса и его социально-экономических последствий.

Роль специалистов по системному анализу при подготовке сценария — помочь привлекаемым ведущим специалистам соответствующих областей знаний выявить общие закономерности системы; проанализировать внешние и внутренние факторы, влияющие на ее развитие и формирование целей; определить источники этих факторов; проанализировать высказывания ведущих специалистов в периодической печати, научных публикациях и других источниках научно-технической информации; вспомогательные информационные фонды (лучше автоматизированные), способствующие решению соответствующей проблемы.

В последнее время понятие сценария все больше расширяется в направлении, как областей применения, так и форм представления и методов их разработки: в сценарий вводятся количественные параметры и устанавливаются их взаимозависимости, предлагаются методики подготовки сценария с использованием ЭВМ (машинных сценариев), методики целевого управления подготовкой сценария.

Сценарий позволяет создать предварительное представление о проблеме (системе) в ситуациях, когда не удается сразу отобразить ее формальной моделью. Но все же сценарий — это текст со всеми вытекающими последствиями (синонимия, омонимия, парадоксы), связанными с возможностью неоднозначного его толкования разными специалистами. Поэтому такой текст следует рассматривать как основу для разработки более формализованного представления о будущей системе или решаемой проблеме.

Методы экспертных оценок. Изучению возможностей и особенностей применения экспертных оценок посвящено много работ. В них рассматриваются формы экспертного опроса (разные виды анкетирования, интервью), подходы к оцениванию (ранжирование, нормирование, различные виды упорядочения и т.д.), методы обработки результатов опроса, требования к экспертам и формированию экспертных групп, вопросы тренировки экспертов, оценки их компетентности (при обработке оценок вводятся и учитываются коэффициенты компетентности экспертов, достоверности их мнений), методики организации экспертных опросов. Выбор форм и методов проведения экспертных опросов, подходов к обработке результатов опроса и т.д. зависит от конкретной задачи и условий проведения экспертизы. Однако существуют некоторые общие проблемы, которые нужно помнить специалисту по системному анализу. Остановимся на них подробнее.

Возможность использования экспертных оценок, обоснование их объективности обычно базируется на том, что неизвестная характеристика исследуемого явления трактуется как случайная величина, отражением закона распределения которой является индивидуальная оценка специалиста-эксперта о достоверности и значимости того или иного события. При этом предполагается, что истинное значение исследуемой характеристики находится внутри диапазона оценок, получаемых от группы экспертов, и что обобщенное коллективное мнение является достоверным.

Однако в некоторых теоретических исследованиях это предположение подвергается сомнению. Например, предлагается разделить проблемы, для решения которых применяются экспертные оценки, на два класса. К первому классу относятся проблемы, которые достаточно хорошо обеспечены информацией и для которых можно использовать принцип «хорошего измерителя», считая эксперта хранителем большого объема информации, а групповое мнение экспертов — близким к истинному. Ко второму классу относятся проблемы, в отношении которых знаний для уверенности в справедливости названных предположений недостаточно; экспертов нельзя рассматривать как «хороших измерителей», и необходимо осторожно подходить к обработке результатов экспертизы, поскольку в этом случае мнение одного (единичного) эксперта, больше внимания уделяющего исследованию малоизученной проблемы, может оказаться наиболее значимым, а при формальной обработке оно будет утрачено. В связи с этим к задачам второго класса в основном должна применяться качественная обработка Результатов. Использование методов осреднения (справедливых для «хороших измерителей») в данном случае может привести к существенным ошибкам.

Задачи коллективного принятия решений по формированию целей, совершенствованию методов и форм управления обычно можно отнести к первому классу. Однако при разработке прогнозов и перспективных планов целесообразно выявлять «редкие» мнения и подвергать их более тщательному анализу.

Другая проблема, которую нужно иметь в виду при проведении системного анализа, заключается в следующем: даже в случае решения проблем, относящихся к первому классу, нельзя забывать о том, что экспертные оценки несут в себе не только узко субъективные черты, присущие отдельным экспертам, но и коллективно-субъективные черты, которые не исчезают при обработке результатов опроса (а при применении Дельфи-процедуры даже могут усиливаться). Иными словами, на экспертные оценки нужно смотреть как на некоторую «общественную точку зрения», зависящую от уровня научно-технических знаний общества относительно предмета исследования, которая может меняться по мере развития системы и наших представлений о ней. Следовательно, экспертный опрос — это не одноразовая процедура. Такой способ получения информации о сложной проблеме, характеризующейся большой степенью неопределенности, должен стать своего рода «механизмом» в сложной системе, т.е. необходимо создать регулярную систему работы с экспертами.

Следует обратить также внимание на то, что использование классического частотного подхода к оценке вероятности при организации проведения экспертных опросов бывает затруднительным, а иногда и невозможным (из-за невозможности доказать правомерность использования представительности выборки). Поэтому в настоящее время ведутся исследования характера вероятности экспертной оценки, базирующиеся на теории, размытых множеств Заде, на представлении об экспертной оценке как степени подтверждения гипотезы или как вероятности достижения цели. Одной из разновидностей экспертного метода является метод изучения сильных и слабых сторон организации, возможностей и угроз ее деятельности - метод SWOT-анализа.

Методы типа «Делъфи». Метод «Дельфи», или метод «дельфийского оракула», первоначально был предложен О. Хелмером и его коллегами как итеративная процедура при проведении мозговой атаки, которая способствовала бы снижению влияния психологических факторов при повторении заседаний и повышении объективности результатов. Однако почти одновременно «Дельфи»-процедуры стали средством повышения объективности экспертных опросов с использованием количественных оценок при оценке «дерева цели» и при разработке «сценариев».

Основные средства повышения объективности результатов при применении «Дельфи»-метода — использование обратной связи, ознакомление экспертов с результатами предшествующего тура опроса и учет этих результатов при оценке значимости мнений экспертов.

В конкретных методиках, реализующих процедуру «Дельфи», это средство используется в разной степени. Так, в упрощенном виде организуется последовательность итеративных циклов мозговой атаки. В более сложном варианте разрабатывается программа последовательных индивидуальных опросов с помощью анкет-вопросников, исключающих контакты между экспертами, но предусматривающих ознакомление их с мнениями друг друга между турами. Вопросники от тура к туру могут уточняться. Для снижения таких факторов, как внушение или приспособление к мнению большинства иногда требуется, чтобы эксперты обосновали свою точку зрения, но это не всегда приводит к желаемому результату, а напротив, может усилить эффект приспособляемости. В наиболее развитых методиках экспертам присваивают весовые коэффициенты значимости их мнений, вычисляемые на основе предшествующих опросов, уточняемые от тура к туру и учитываемые при получении обобщенных результатов оценок.

В силу трудоемкости обработки результатов и значительных временных затрат первоначально предусматриваемые методики «Дельфи» не всегда удается реализовать на практике. В последнее время процедура «Дельфи» в той или иной форме обычно сопутствует любым другим методам моделирования систем — морфологическому, сетевому и т.д. В частности, весьма перспективная идея развития методов экспертных оценок, предложенная в свое время В.М. Глушковым, состоит в том, чтобы сочетать целенаправленный многоступенчатый опрос с «разверткой» проблемы во времени, что становится вполне реализуемым в условиях алгоритмизации такой (достаточно сложной) процедуры и использования компьютерной техники.

Для повышения результативности опросов и активизации экспертов иногда сочетают процедуру «Дельфи» с элементами деловой игры: эксперту предлагается проводить самооценку, ставя себя на место конструктора, которому реально поручено выполнять проект, или на место работника аппарата управления, руководителя соответствующего уровня системы организационного управления и т.д.

Идея метода дерева целей впервые была предложена У. Черменом в связи с проблемами принятия решений в промышленности.

Термин «дерево» подразумевает использование иерархической структуры, полученной путем разделения обшей цели на подцели, а их, в свою очередь, на более детальные составляющие, которые можно называть подцелями нижележащих уровней или, начиная с некоторого уровня, — функциями. Как правило, термин «дерево целей» используется для иерархических структур, имеющих отношения строго древовидного порядка, но сам метод иногда применяется и в случае «слабых» иерархий. Поэтому в последнее время все большее распространение получает предложенный В.М. Глушковым термин «прогнозный граф», который может представляться и в виде древовидной иерархической структуры, и в форме структуры со «слабыми» связями.

При использовании метода «дерево целей» в качестве средства принятия решений часто вводят термин «дерево решений». При применении «дерева» для выявления и уточнения функций управления говорят о «дереве целей и функций». При структуризации тематики научно-исследовательской организации удобнее пользоваться термином «дерево проблемы», а при разработке прогнозов - термином «дерево направлений развития (или прогнозирования развития)» или упомянутым выше термином «прогнозный граф».

Метод «дерева целей» ориентирован на получение полной и относительно устойчивой структуры целей, проблем, направлений, т.е. такой структуры, которая на протяжении какого-то периода времени мало изменялась при неизбежных изменениях, происходящих в любой развивающейся системе. Для достижения этого при построении вариантов структуры следует учитывать закономерности целеобразования и использовать принципы и методики формирования иерархических структур целей и функций.

Термином «морфология» в биологии и языкознании определяется учение о внутренней структуре исследуемых систем (организмов, языков) или сама внутренняя структура этих систем. Идея морфологического опроса мышления восходит к Аристотелю и Платону, к известной средневековой модели механизации мышления Р. Луллия. Однако в систематизированном виде методы морфологического анализа сложных проблем были разработаны швейцарским астрономом Ф. Цвикки, и долгое время морфологический подход к исследованию и проектированию сложных систем был известен под названием метода Цвикки.

Основная идея морфологического подхода — систематически находить наибольшее число, а в пределе — все возможные варианты решения поставленной проблемы или реализации системы путем комбинирования основных (выделенных исследователем) структурных элементов системы или их признаков. При этом система или проблема может разбиваться на части разными способами и рассматриваться в различных аспектах.

Отправными точками морфологического исследования Ф. Цвикки считает:

1) равный интерес ко  всем объектам морфологического  моделирования;

2) ликвидацию всех ограничений  и оценок до тех пор, пока  не будет получена полная структура  исследуемой области;

3) максимально точную  формулировку поставленной проблемы.

Кроме этих общих положений, Цвикки предложил ряд отдельных способов (методов) морфологического моделирования: метод систематического покрытия поля (МСПП), метод отрицания и конструирования (МОК), метод морфологического ящика (ММЯ), метод экстремальных ситуаций (МЭС); метод сопоставления совершенного с дефектным (МССД), метод обобщения (МО). Наибольшую известность получили три первых метода.

МСПП предполагает, что существует некоторое число так называемых «опорных пунктов» знания в любой исследуемой области. Этими пунктами могут быть теоретические положения, эмпирические факты, открытые законы, в соответствии с которыми протекают различные процессы, и т.д. Исходя из ограниченного числа опорных пунктов знания и достаточного числа принципов мышлений) морфологическим методом покрытия поля ищут все возможные решения поставленной проблемы.

Наиболее эффективными методами овладения новыми знаниями, методами хозяйствования и управления, являются деловые игры.

Деловые игры — метод имитации выработан для принятия управленческих решений в различных ситуациях путем игры по заданным правилам группы людей или человека и компьютера. Деловые игры позволяют с помощью моделирования и имитации процессов выйти на анализ, решение сложных практических задач, обеспечить формирование мыслительной культуры, управления, мастерства общения, принятия решений, инструментальное расширение управленческих навыков.

Деловые игры выступают как средства анализа систем управления и подготовки специалистов.

Разработку деловой игры необходимо начинать с четкой формулировки ее назначения. После этого можно приступать к формированию схемы игры и основных ее правил. В выбранной схеме функционирования надо предельно точно отразить опыт работы реальных систем, обратив особое внимание на структуру системы, целевые функции подсистем и системы в целом, на выбор управляющих воздействий и т.д. Одна из основных сложностей построения модели исследуемой ситуации заключается в том, что стремление к наиболее полному отражению исследуемой ситуации может привести к излишней детализации модели, которая в свою очередь повлечет за собой усложнение информационного обеспечения построенной модели. В результате этого увеличивается время, затрачиваемое на игру, затрудняется понимание происходящих процессов. Все это приводит к тому, что эффективность проведения игры снижается. Лучший способ избежать такого рода опасности заключается в том, чтобы постоянно помнить о конкретной цели проектируемой игры. Но при этом следует учитывать, что ситуации, анализируемые в игре, не должны быть упрошены до такой степени, что необходимое решение можно было бы найти непосредственно без глубокого анализа протекающих процессов, так как в этом случае результаты, полученные при анализе хозяйственной деятельности, будут носить поверхностный характер.

Информация о работе Системный анализ в экономике