Автор работы: Пользователь скрыл имя, 20 Декабря 2013 в 12:31, статья
Целью данной работы является построение регрессионной модели урожайности, а также провести факторный анализ выбранных показателей.
Задачи, которые будут выполнены в ходе работы:
Построение и первичный анализ корреляционной матрицы
Построение и анализ регрессионной модели с включением
Построение и анализ регрессионной модели с исключением
Провести факторный анализ
Обзор литературы
Экономическая постановка задачи
Первичный анализ информации
Исследуемые показатели
Гипотезы исследования
Первичный анализ имеющейся информации
Корреляционный анализ
Корреляционная матрица парных коэффициентов корреляции
Корреляционная матрица частных коэффициентов корреляции
Множественные коэффициенты корреляции
Регрессионный анализ
Исключение данных
Включение данных
Анализ регрессионных остатков на нормальный закон распределения
Интерпретация полученных результатов
Министерство образования и науки Российской Федерации
Московский государственный университет экономики, статистики и информатики.
Кафедра Математической Статистики и Эконометрики
Индивидуальная работа по курсу:
«Эконометрика»
на тему:
«Регрессионный и факторный анализы показателей урожайности»
Выполнила: Корженко А.А. Группа ДЭК-301 Руководитель: Профессор, Д.Э.Н Мхитарян В.С. |
Москва, 2013г.
СОДЕРЖАНИЕ
Для выполнения индивидуального задания предоставляются данные, взятые из учебно-методического комплекса «Эконометрика», под редакцией: В.С. Мхитаряна, М.Ю. Архиповой и В.П. Сиротина.
Для выполнения индивидуальной работы будут использоваться показатели урожайности.
Целью данной работы является построение регрессионной модели урожайности, а также провести факторный анализ выбранных показателей.
Задачи, которые будут выполнены в ходе работы:
В исследовании были взяты основные показатели урожайности такие как:
Таблица 1
Исходные данные
i |
yi |
xi(1) |
xi(2) |
xi(3) |
xi(4) |
xi(5) |
1 |
9.70 |
1.59 |
0.26 |
2.05 |
0.32 |
0.14 |
2 |
8.40 |
0.34 |
0.28 |
0.46 |
0.59 |
0.66 |
3 |
9.00 |
2.53 |
0.31 |
2.46 |
0.30 |
0.31 |
4 |
9.90 |
4.63 |
0.40 |
6.44 |
0.43 |
0.59 |
5 |
9.60 |
2.16 |
0.26 |
2.16 |
0.39 |
0.16 |
6 |
8.60 |
2.16 |
0.30 |
2.69 |
0.37 |
0.17 |
7 |
12.50 |
0.68 |
0.29 |
0.73 |
0.42 |
0.23 |
8 |
7.60 |
0.35 |
0.26 |
0.42 |
0.21 |
0.08 |
10 |
13.50 |
3.42 |
0.31 |
3.02 |
1.37 |
0.73 |
11 |
9.70 |
1.78 |
0.30 |
3.19 |
0.73 |
0.17 |
12 |
10.70 |
2.40 |
0.32 |
3.30 |
0.25 |
0.14 |
13 |
12.10 |
9.36 |
0.40 |
11.51 |
0.39 |
0.38 |
14 |
9.70 |
1.72 |
0.28 |
2.26 |
0.82 |
0.17 |
15 |
7.00 |
0.59 |
0.29 |
0.60 |
0.13 |
0.35 |
16 |
7.20 |
0.28 |
0.26 |
0.30 |
0.09 |
0.15 |
17 |
8.20 |
1.64 |
0.29 |
1.44 |
0.20 |
0.08 |
18 |
8.40 |
0.09 |
0.22 |
0.05 |
0.43 |
0.20 |
19 |
13.10 |
0.08 |
0.25 |
0.03 |
0.73 |
0.20 |
20 |
8.70 |
1.36 |
0.26 |
0.17 |
0.99 |
0.42 |
Таблица 2
Матрица парных коэффициентов корреляции
yi |
xi(1) |
xi(2) |
xi(3) |
xi(4) |
xi(5) | |
yi |
1 |
0,41 |
0,32 |
0,38 |
0,55 |
0,28 |
xi(1) |
0,41 |
1 |
0,85 |
0,98 |
0,08 |
0,32 |
xi(2) |
0,32 |
0,85 |
1 |
0,88 |
-0,02 |
0,43 |
xi(3) |
0,38 |
0,98 |
0,88 |
1 |
0,00 |
0,25 |
xi(4) |
0,55 |
0,08 |
-0,02 |
0,00 |
1 |
0,55 |
xi(5) |
0,28 |
0,32 |
0,43 |
0,25 |
0,55 |
1 |
Анализ матрицы парных коэффициентов корреляции показывает, что результативный показатель наиболее тесно связан с показателем x4 – количеству удобрений, расходуемых на гектар (ry4=0.55).
В то же время связь между
признаками-аргументами
О наличии мультиколлинеарности
свидетельствуют также
Как было выяснено в ходе анализа корреляционной матрицы, присутствует мультиколлинеарность, что и будет показано в регрессионной модели – она несет в себе отрицательный характер.
Чтобы продемонстрировать отрицательное влияние мультиколлинеарности, рассмотрим регрессионную модель урожайности, включив в нее все исходные показатели:
Сводка для модели | ||||
Модель |
R |
R-квадрат |
Скорректированный R-квадрат |
Стд. ошибка оценки |
1 |
,552a |
,304 |
,263 |
1,65465 |
a. Предикторы: (конст) x4 |
Дисперсионный анализa | ||||||||||||
Модель |
Сумма квадратов |
ст.св. |
Средний квадрат |
F |
Знч. | |||||||
1 |
Регрессия |
20,361 |
1 |
20,361 |
7,437 |
,014b | ||||||
Остаток |
46,544 |
17 |
2,738 |
|||||||||
Всего |
66,904 |
18 |
||||||||||
a. Зависимая переменная: yi | ||||||||||||
Коэффициентыa | ||||||||||||
Модель |
Нестандартизованные коэффициенты |
Стандартизованные коэффициенты |
t |
Знч. | ||||||||
B |
Стд. Ошибка |
Бета | ||||||||||
1 |
(Константа) |
8,076 |
,695 |
11,622 |
,000 | |||||||
x4 |
3,292 |
1,207 |
,552 |
2,727 |
,014 | |||||||
a. Зависимая переменная: yi |
Исключенные переменныеa | ||||||
Модель |
Бета включения |
t |
Знч. |
Частная корреляция |
Статистики коллинеарности | |
Толерантность | ||||||
1 |
x1 |
,364b |
1,930 |
,072 |
,435 |
,993 |
x2 |
,333b |
1,744 |
,100 |
,400 |
1,000 | |
x3 |
,379b |
2,038 |
,058 |
,454 |
1,000 | |
x5 |
-,030b |
-,120 |
,906 |
-,030 |
,700 | |
a. Зависимая переменная: yi | ||||||
b. Предикторы в модели: (конст) x4 |
Следовательно, уравнение регрессии примет вид:
(0,695) (1,207)
R = 0,304 F = 7,43
В скобках указаны tнабл(bj), расчетные значения t – критерия для проверки гипотезы о значимости коэффициента регрессии Н0: βj=0, j=1, 2, 3, 4, 5. Критическое значение tкр=2,14 найдено по таблице t – распределения при уровне значимости α=0.05. Из уравнения следует, что статистически значимым является коэффициент регрессии только при x4 - количество удобрений, расходуемых на гектар, так как t4 = 2,727>tкр = 2,14.
Множественный коэффициент детерминации ry2=0,304 свидетельствует о том, что только 30,4% вариации урожайности объясняется вошедшими в модель показателем (X4), то есть насыщенностью растениеводства удобрениями. Остальная часть вариации обусловлена действием неучтенных факторов (x1,x2, x3, x5, погодных условий и др.).
После реализации алгоритма пошагового регрессионного анализа с исключением переменных и учетом того, что в уравнение должна войти только одна из трех тесно связанных переменных (x1, x2 или x3), получаем окончательное уравнение регрессии:
Коэффициентыa | ||||||
Модель |
Нестандартизованные коэффициенты |
Стандартизованные коэффициенты |
t |
Знч. | ||
B |
Стд. Ошибка |
Бета | ||||
1 |
(Константа) |
4,809 |
5,778 |
,832 |
,420 | |
x1 |
,001 |
,954 |
,002 |
,001 |
,999 | |
x2 |
11,092 |
22,653 |
,262 |
,490 |
,633 | |
x3 |
,150 |
,854 |
,215 |
,176 |
,863 | |
x4 |
4,211 |
1,607 |
,706 |
2,621 |
,021 | |
x5 |
-2,695 |
3,153 |
-,272 |
-,855 |
,408 | |
2 |
(Константа) |
4,811 |
5,453 |
,882 |
,393 | |
x2 |
11,085 |
21,301 |
,262 |
,520 |
,611 | |
x3 |
,152 |
,314 |
,216 |
,482 |
,637 | |
x4 |
4,212 |
1,531 |
,706 |
2,750 |
,016 | |
x5 |
-2,694 |
2,934 |
-,272 |
-,918 |
,374 | |
3 |
(Константа) |
2,539 |
2,668 |
,952 |
,356 | |
x2 |
20,247 |
9,352 |
,478 |
2,165 |
,047 | |
x4 |
4,431 |
1,424 |
,742 |
3,111 |
,007 | |
x5 |
-3,264 |
2,615 |
-,329 |
-1,248 |
,231 | |
4 |
(Константа) |
3,935 |
2,464 |
11,622 |
,130 | |
x2 |
4,431 |
8,102 |
,333 |
2,744 |
,100 | |
x4 |
3,336 |
1,141 |
,559 |
2,923 |
,010 | |
a. Зависимая переменная: yi |
Информация о работе Регрессионный и факторный анализы показателей урожайности