Производственные функции, основные понятия и определения

Автор работы: Пользователь скрыл имя, 17 Января 2015 в 20:16, реферат

Краткое описание

Ресурсы в экономике выступают в качестве факторов производства, к которым относятся:
1. труд;
2. земля (природные ресурсы);
3. капитал;
4. предпринимательская способность;
5. научно-технический прогресс.
Все эти факторы тесно взаимосвязаны между собой.

Содержание

Введение…………………………………………………………………………..3
Глава I. Производственные функции, основные понятия и определения.4
1.1. Факторы производства……………………………………………………….4
1.2. Производственная функция и её экономическое содержание…………….9
1.3. Эластичность замещения факторов………………………………………..13
1.4. Эластичность производственной функции и отдача от масштаба………16
1.5. Свойства производственной функции и основные характеристики производственной функции……………………………………………………..19
Глава II. Виды производственных функций………………………………..23
2.1. Определение линейно - однородных производственных функций……...23
2.2. Виды линейно-однородных производственных функций………………..25
2.3. Другие виды производственных функций………………………………...28
Приложение……………………………………………………………………..30
Заключение……………………………………………………………………...32
Список используемой литературы…………………………………………...34

Прикрепленные файлы: 1 файл

oglavlenie.doc

— 272.50 Кб (Скачать документ)


 

 

 

 

 

 

 

 

 

Анализ производственной функции предполагает необходимость разграничения краткосрочного и долгосрочного периодов времени. В первом случае имеется в виду такой временной интервал, в течение которого объем производства может регулироваться только при помощи изменения количества используемых переменных факторов, в то время как постоянные затраты остаются неизменными. Факторы производства, затраты которых неизменны в краткосрочном периоде времени, называются постоянными.


Соответственно факторы производства, размер которых изменяется в краткосрочном периоде — переменные. Долгосрочный период времени рассматривается как интервал, который достаточен для того, чтобы предприятие могло изменить затраты всех факторов производства. Это означает, что в данном случае не существует пределов для роста объема производства и все факторы становятся переменными. В наиболее общем виде различия краткосрочного и долгосрочного интервалов могут быть сведены к следующему.


 

 

 

 

 

 

Во-первых, это касается условий хозяйствования. В краткосрочном периоде значительное расширение объема производства невозможно, ограничивается имеющимися производственными мощностями фирмы. В длительном периоде фирма имеет больше свободы в отношении увеличения объемов выпуска, поскольку все факторы производства становятся переменными.

Во-вторых, необходимо учитывать специфику издержек производства. Краткосрочный период характеризуется наличием как постоянных, так и переменных издержек производства, в долгосрочном периоде все издержки становятся постоянными.

В-третьих, краткосрочный период предполагает постоянство фирм, работающих в данной отрасли. В долгосрочном периоде имеется реальная возможность выхода или вступления в отрасль новых конкурентов.

В-четвертых, следует определить возможности извлечения экономической прибыли в рассматриваемые периоды. В условиях долгосрочного периода экономическая прибыль равна нулю. В краткосрочном периоде экономическая прибыль может быть как положительной, так и отрицательной.

ПФ удовлетворяет следующему ряду свойств:

  1. без ресурсов нет выпуска, т.е. f(0,0,a)=0;
  2. при отсутствии хотя бы одного из ресурсов нет выпуска, т.е. ;
  3. с ростом затрат хотя бы одного ресурса объем выпуска растет;
  4. с ростом затрат одного ресурса при неизменном количестве другого ресурса объем выпуска растет, т.е. если x>0, то ;
  5. с ростом затрат одного ресурса при неизменном количестве другого ресурса величина прироста выпуска на каждую дополнительную единицу i-го ресурса не растет (закон убывающей эффективности), т.е. если то ;
  6. при росте одного ресурса предельная эффективность другого ресурса возрастает, т.е. если x>0, то ;
  7. ПФ является однородной функцией, т.е. ; при р>1 имеем рост эффективности производства от роста масштаба производства; при р<1 имеем падение эффективности производства от роста масштаба производства; при р=1 имеем постоянную эффективность производства при росте его масштаба.

 

 

 

 

 

 

 

Глава II. Виды производственных функций

2.1. Определение линейно - однородных производственных функций

Производственная функция может быть записана в самых различных алгебраических формах. Как правило, экономисты работают с линейно однородными производственными функциями.

Производственная функция называется однородной степени n, если при умножении ресурсов на некоторое число k полученный объем производства будет в kn раз отличаться от первоначального. Условия однородности производственной функции записывается следующим образом:

Q = f (kL, kK) = kn Q

Величина

Значение

Q

Объём производства продукции

k

Некоторое произвольное число

n

Степень однородности функции

при n=1

функция линейно однородна

при n>1

возрастающая отдача

при n<1

убывающая отдача


 

Например, в день затрачивается 9 часов труда (L) и 9 часов работы машин (К). Пусть при данном сочетании факторов L и K фирма может производить в день продукции на сумму 200 тыс. рублей. В этом случае производственная функция Q = F(L,K) будет представлена следующим равенством:

Q = F(9; 9) = 200 000, где F – определённого вида алгебраическая формула, в которую подставляются значения L и T.

Допустим, фирма принимает решение увеличить работу капитала и применение труда в два раза, что приводит к росту объёма выпускаемой продукции до 600 тыс. рублей. Получаем, что умножение факторов производства на 2 приводит к увеличению объёма производства в 3 раза, то есть, используя условия однородности производственной функции:

Q = f (kL, kK) = kn Q, получаем:

Q = f (2L, 2K) = 2×1,5×Q, то есть, в данном случае мы имеем дело с однородной производственной функцией степени 1,5.

Показатель степени n называется степенью однородности.

Если n = 1, то говорят, что функция однородна первой степени или линейно однородна. Линейно однородная производственная функция представляет интерес тем, что для нее характерна постоянная отдача, то есть, при увеличении факторов производства объём выпускаемой продукции постоянно увеличивается в одинаковой мере.

Если n>1, то производственная функция демонстрирует возрастающую отдачу, то есть, рост факторов производства ведёт к ещё большему росту объёма производства (например: увеличение факторов в два раза ведёт к увеличению объёма в 2 раза; в 3 раза – к увеличению в 6 раз; в 4 раза – к увеличению в 12 раз и т.д.) Если n<1, то производственная функция демонстрирует убывающую отдачу, то есть, рост факторов производства ведёт к уменьшению отдачи по росту объёмов производства (например: увеличение факторов в 2 раза – ведёт к увеличению объемов в 2 раза; увеличение факторов в 3 раза – к увеличению объёмов в 1,5 раз; увеличение факторов в 4 раза – к увеличению объёмов в 1,2 раза и т.д.).

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Виды линейно-однородных производственных функций

 Примерами линейно однородных производственных функций являются производственная функция Кобба-Дугласа и производственная функция с постоянной эластичностью замещения.

Впервые производственная функция была рассчитана в 1920-е годы для обрабатывающей промышленности США экономистами Коббом и Дугласом. Исследования Пола Дугласа в сфере обрабатывающей промышленности США и последующая их обработка Чарльзом Коббом привели к появлению математического выражения, описывающего влияние применения труда и капитала на выработку продукции в обрабатывающей отрасли, в виде равенства:

Ln(Q) = Ln(1,01) + 0,73×Ln(L) + 0.27×Ln(K)

В общем виде производственная функция Кобба-Дугласа имеет вид:

Q = AKαLβν

или:

lnQ = lnA + αlnK + βlnL + lnν

Величина

Значение

Q

Объём производства продукции

ln

Натуральный логарифм (с основанием e)

α,β

Степенные коэффициенты:

α+β=n(степень однородности функции)


 

Если α+β<1, то наблюдается убывающая отдача от масштабов использования факторов производства (рис. 1.2.в). Если α+β=1, то существует постоянная отдача от масштабов использования факторов производства (рис. 1.2.а). Если α+β>1, то наблюдается возрастающая отдача от масштабов использования факторов производства (рис. 1.2.б).

В производственной функции Кобба-Дугласа степенные коэффициенты α и β в сумме выражают степень однородности производственной функции:

α+β=n

Предельная норма технического замещения капитала трудом при данной технологии определяется по формуле:


׀MRTSL,K׀ = 


 

Если внимательно посмотреть на функцию Кобба-Дугласа для обрабатывающей промышленности США, рассчитанную в 1920-е годы, то можно ещё раз, уже на конкретном примере отметить, что производственная функция является математическим выражением (через определённую алгебраическую форму) зависимости объёмов производства (Q) от объёмов использования факторов производства (L и K). Так, придавая конкретные значения переменным L и K можно определить предполагаемые объёмы выпуска продукции (Q) для обрабатывающей промышленности США                 в 1920-е годы.

Эластичность замещения в производственной функции Кобба-Дугласа всегда равна 1.

Но производственная функция Кобба-Дугласа имела некоторые недостатки.  Для преодоления ограничения функции Кобба-Дугласа, которая всегда является однородной в первой степени, в 1961 г. несколькими экономистами (К. Эрроу, Х. Ченери, Б. Минхас и Р. Солоу) была предложена производственная функция с постоянной эластичностью замещения. Это линейно однородная производственная функция с постоянной эластичностью замещения ресурсов. Позже была предложена и производственная функция с переменной эластичностью замещения. Она представляет собой обобщение производственной функции с постоянной эластичностью замещения, допускающее изменение эластичности замещения с изменением отношения между затрачиваемыми ресурсами.

Линейно однородная производственная функция с постоянной эластичностью замещения ресурсов имеет следующий вид:

 

 

Q = а [a K-b + (1 - c) L-b]-1/b,

Величина

Значение

Q

Объём производства продукции

K,L

Факторы производства (капитал, труд)

a,b,c

Константы


 

Эластичность замещения факторов для данной производственной функции определяется формулой:

σ = 1/(1+b).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Другие виды производственных  функций

Другим видом производственной функции является линейная производственная функция, которая имеет следующий вид:

Q(L,K) = aL + bK

Данная производственная функция является однородной первой степени, следовательно, она имеет постоянную отдачу от масштабов производства. Графически данная функция представлена на рисунке 1.2, а.

Экономический смысл линейной производственной функции состоит в том, что она описывает такое производство, в котором факторы являются взаимозаменяемыми, то есть, не имеет значения – использовать только труд или только капитал. Но в реальной жизни такая ситуация практически не возможна, так как любая машина все равно обслуживается человеком.

Коэффициенты a и b функции, которые находятся при переменных L и K показывают пропорции, в которых один фактор может быть замещён другим. Например, если a=b=1, то это значит, что 1 час труда может быть заменен 1 часом машинного времени для того, чтобы произвести такой же объём продукции.

Необходимо отметить, что в некоторых видах хозяйственной деятельности труд и капитал вообще не могут заменить друг друга и должны использоваться в фиксированной пропорции: 1 рабочий - 2 станка, 1 автобус - 1 водитель. В этом случае эластичность замещения факторов равна нулю, а технология производства отображается производственной функцией Леонтьева:


 

Q(L,K) = min{       ;  },


Величина

Значение

Q

Объём производства продукции

a,b

Технологически необходимый расход факторов производства на единицу продукции

min{x;y}

Минимальное значение между переменными x и y


 

Если, например, на каждом автобусе дальнего следования должно быть два водителя, то при наличии в автобусном парке 50 автобусов и 90 водителей одновременно могут обслуживаться только 45 маршрутов: 
min{90/2;50/1} = 45.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Приложение

Примеры решения задач с использованием производственных функций

Задача 1

Фирма, занимающаяся речными перевозками, использует труд перевозчиков (L) и паромы (K). Производственная функция имеет вид . Цена единицы капитала равна 20, цена единицы труда равна 20. Каков будет наклон изокосты? Какое количество труда и капитала должна привлечь фирма для осуществления 100 перевозок?

Решение

Изокоста задается уравнением:

,

где C - величина общих издержек (некоторая константа). Отсюда:

  ,

т.е. наклон этой прямой равен -1 .

Оптимальное количество труда и капитала для 100 перевозок определяется как точка касания изокванты и изокосты при некотором C . Решая уравнение изокванты получаем:

√(L×K) = 100/10 = 10, тогда .

Тогда . Так как общие издержки при этом должны быть минимальны, то, минимизируя C по L , найдем количество труда L: и . Количество капитала найдем по формуле .

Ответ: Для осуществления 100 перевозок фирма должна привлечь 10 единиц труда и 10 единиц капитала.

 

 

Задача 2

Производственная функция имеет вид , где Y - количество продукции за день, L - часы труда, K - часы работы машин. Предположим, что в день затрачивается 9 часов труда и 9 часов работы машин.

Информация о работе Производственные функции, основные понятия и определения