Автор работы: Пользователь скрыл имя, 20 Октября 2014 в 21:51, реферат
С тех пор как экономика стала серьезной самостоятельной наукой, исследователи пытаются дать свое представление о возможных путях экономического развития, спрогнозировать ту или иную ситуацию, предвидеть будущие значения экономических показателей, указать инструменты изменения ситуации в желательном направлении. С другой стороны, во многих случаях различные экономисты предлагают разные, а зачастую противоположные методы решения той или иной задачи
1.Парная линейная регрессия
С тех пор как экономика стала серьезной самостоятельной наукой, исследователи пытаются дать свое представление о возможных путях экономического развития, спрогнозировать ту или иную ситуацию, предвидеть будущие значения экономических показателей, указать инструменты изменения ситуации в желательном направлении. С другой стороны, во многих случаях различные экономисты предлагают разные, а зачастую противоположные методы решения той или иной задачи. Политики либо управляющие производством, выбирая одну из возможных стратегий решения, получают определенный результат. Плох он или хорош, и можно ли было получить лучший результат, проверить весьма затруднительно. Экономическая ситуация практически никогда не повторяется в точности, следовательно, нет возможности применить две стратегии при одних и тех же условиях с целью сравнения конечного результата. Поэтому одной из центральных задач экономического анализа является предсказание либо прогнозирование развития некоторого экономического объекта при создании тех или иных условий. Поняв глубинные движущие силы исследуемого процесса, можно научиться рационально управлять его развитием.
Поведение и значение любого экономического показателя зависят практически от бесконечного количества факторов, и все учесть нереально. Но в этом и нет необходимости. Обычно лишь ограниченное количество факторов действительно существенно воздействуют на исследуемый экономический показатель. Доля влияния остальных факторов столь незначительна, что их игнорирование не может привести к существенным отклонениям в поведении исследуемого объекта. Выделение и учет в модели лишь ограниченного числа реально доминирующих факторов и является серьезной предпосылкой для качественного анализа, прогнозирования и управления ситуацией. Экономическая теория выявила и исследовала значительное число устоявшихся и стабильных связей между различными показателями. Например, хорошо изученными являются зависимости спроса или потребления от уровня дохода и цен на товары; зависимость между уровнями безработицы и инфляции; зависимость объема производства от целого ряда факторов (размера основных фондов, их возраста, качества персонала и т.д.); зависимость между производительностью труда и уровнем механизации, а также многие другие зависимости.
Любая экономическая политика заключается в регулировании экономических переменных, и она должна базироваться на знании того, как эти переменные связаны с другими переменными, ключевыми для принимающего решения политика или предпринимателя. Так, в рыночной экономике нельзя непосредственно регулировать темп инфляции, но на него можно воздействовать средствами фискальной (бюджетно-налоговой) и монетарной (кредитно-денежной) политики. Поэтому, в частности, должна быть изучена зависимость между предложением денег и уровнем цен.
Однако в реальных ситуациях даже устоявшиеся зависимости могут проявляться по-разному. Еще более сложной является задача анализа малоизученных и нестабильных зависимостей, построение моделей которых является краеугольным камнем эконометрики. Здесь следует отметить, что такие экономические модели невозможно строить, проверять и совершенствовать без статистического анализа входящих в них переменных с использованием реальных статистических данных. Инструментарием такого анализа являются методы статистики и эконометрики, в частности регрессионного и корреляционного анализа. Следует иметь в виду, что статистический анализ зависимостей сам по себе не вскрывает существо причинных связей между явлениями, т.е. он не решает вопроса, в силу каких причин одна переменная влияет на другую. Решение такой задачи является результатом качественного (содержательного) изучения связей, которое обязательно должно либо предшествовать статистическому анализу, либо сопровождать его.
В естественных науках большей частью имеют дело со строгими (функциональными) зависимостями, при которых каждому значению одной переменной соответствует единственное значение другой. Однако в подавляющем большинстве случаев между экономическими переменными таких зависимостей нет. Например, нет строгой зависимости между доходом и потреблением, ценой и спросом, производительностью труда и стажем работы и т.д. Это связано с целым рядом причин и, в частности, с тем, что, во-первых, при анализе влияния одной переменной на другую не учитывается целый ряд других факторов, влияющих на нее; во-вторых, это влияние может быть не прямым, а проявляться через цепочку других факторов; в-третьих, многие такие воздействия носят случайный характер и т.д. Поэтому в экономике говорят не о функциональных, а о корреляционных, либо статистических, зависимостях. Нахождение, оценка и анализ таких зависимостей, построение формул зависимостей и оценка их параметров являются одним из важнейших разделов эконометрики.
Статистической называют зависимость, при которой изменение одной из величин влечет изменение распределения другой. В частности, статистическая зависимость проявляется в том, что при изменении одной из величин изменяется среднее значение другой. Такую статистическую зависимость называют корреляционной.
экономический показатель парный регрессия
1.2 Суть регрессионного анализа
Можно указать два варианта рассмотрения взаимосвязей между двумя переменными X и У. В первом случае обе переменные считаются равноценными в том смысле, что они не подразделяются на первичную и вторичную (независимую и зависимую) переменные. Основным в этом случае является вопрос о наличии и силе взаимосвязи между этими переменными. Например, между ценой товара и объемом спроса на него, между урожаем картофеля и урожаем зерна, между интенсивностью движения транспорта и числом аварий. При исследовании силы линейной зависимости между такими переменными обращаются к корреляционному анализу, основной мерой которого является коэффициент корреляции. Вполне вероятно, что связь в этом случае вообще не носит направленного характера. Например, урожайность картофеля и зерновых обычно изменяется в одном и том же направлении, однако очевидно, что ни одна из этих переменных не является определяющей.
Другой вариант рассмотрения взаимосвязей выделяет одну из величин как независимую (объясняющую), а другую как зависимую (объясняемую). В этом случае изменение первой из них может служить причиной для изменения другой. Например, рост дохода ведет к увеличению потребления; рост цены — к снижению спроса; снижение процентной ставки увеличивает инвестиции; увеличение обменного курса валюты сокращает объем чистого экспорта и т.д. Однако такая зависимость не является однозначной в том смысле, что каждому конкретному значению объясняющей переменной (набору объясняющих переменных) может соответствовать не одно, а множество значений из некоторой области. Другими словами, каждому конкретному значению объясняющей переменной (набору объясняющих переменных) соответствует некоторое вероятностное распределение зависимой переменной (рассматриваемой как СВ). Поэтому анализируют, как объясняющая(ие) переменная(ые) влияет(ют) на зависимую переменную «в среднем». Зависимость такого типа, выражаемая соотношением
(4.1)
называется функцией регрессии Y на X. При этом X называется независимой (объясняющей) переменной (регрессором), Y — зависимой (объясняемой) переменной. При рассмотрении зависимости двух СВ говорят о парной регрессии.
Зависимость нескольких переменных, выражаемая функцией
(4.2)
называют множественной регрессией.
Термин «регрессия» (движение назад, возвращение в прежнее состояние) был введен Фрэнсисом Галтоном в конце XIX века при анализе зависимости между ростом родителей и ростом детей. Галтон заметил, что рост детей у очень высоких родителей в среднем меньше, чем средний рост родителей. У очень низких родителей, наоборот, средний рост детей выше. И в том, и в другом случае средний рост детей стремится (возвращается) к среднему росту людей в данном регионе. Отсюда и выбор термина, отражающего такую зависимость.
В настоящее время под регрессией понимается функциональная зависимость между объясняющими переменными и условным математическим ожиданием (средним значением) зависимой переменной, которая строится с целью предсказания (прогнозирования) этого среднего значения при фиксированных значениях первых.
Для отражения того факта, что реальные значения зависимой переменной не всегда совпадают с ее условными математическими ожиданиями и могут быть различными при одном и том же значении объясняющей переменной (наборе объясняющих переменных), фактическая зависимость должна быть дополнена некоторым слагаемым е, которое, по существу, является СВ и указывает на стохастическую суть зависимости. Из этого следует, что связи между зависимой и объясняющей(ими) переменными выражаются соотношениями
(4.3)(4.4)
называемыми регрессионными моделями (уравнениями).
Обсуждение регрессионных моделей в следующих главах поможет глубже изучить данное понятие.
Возникает вопрос о причинах обязательного присутствия в регрессионных моделях случайного фактора (отклонения). Среди таких причин выделим наиболее существенные.
1. Невключение в модель всех объясняющих переменных. Любая регрессионная (в частности, эконометрическая) модель является упрощением реальной ситуации. Последняя всегда представляет собой сложнейшее переплетение различных факторов, многие из которых в модели не учитываются, что порождает отклонение реальных значений зависимой переменной от ее модельных значений. Например, спрос (Q) на товар определяется его ценой (Р), ценой (Ps) на товары-заменители, ценой (Рс) на дополняющие товары, доходом (/) потребителей, их количеством (N), вкусами (Т), ожиданиями (W) и т. д. Безусловно, перечислить все объясняющие переменные здесь практически невозможно. Например, мы не учли такие факторы, как традиции, национальные или религиозные особенности, географическое положение региона, погода и многие другие, влияние которых приведет к некоторым отклонениям реальных наблюдений от модельных, которые можно выразить через случайный член : Q = f(P, Ps, Pc, I, N, T, W, ). Проблема еще и в том, что никогда заранее не известно, какие факторы при создавшихся условиях действительно являются определяющими, а какими можно пренебречь. Здесь уместно отметить, что в ряде случаев учесть непосредственно какой-то фактор нельзя в силу невозможности получения по нему статистических данных. Например, величина сбережений домохозяйств может определяться не только доходами их членов, но и, например, здоровьем последних, информация о котором в цивилизованных странах составляет врачебную тайну и не раскрывается. Кроме того, ряд факторов носит принципиально случайный характер (например, погода), что добавляет неоднозначности при рассмотрении некоторых моделей (например, модель, прогнозирующая объем урожая).
Из-за слабой изученности исследуемого процесса либо из-за его переменчивости может быть неверно подобрана функция, его моделирующая. Это, безусловно, скажется на отклонении модели от реальности, что отразится на величине случайного члена. Например, производственная функция (У) одного фактора (X) может моделироваться функцией Y = , хотя должна была использоваться другая модель: У = (0 < b < 1), учитывающая закон убывающей эффективности. Кроме того, неверным может быть подбор объясняющих переменных.
5. Ограниченность статистических данных. Зачастую строятся модели, выражаемые непрерывными функциями. Но для этого используется набор данных, имеющих дискретную структуру. Это несоответствие находит свое выражение в случайном отклонении.
6. Непредсказуемость человеческого фактора. Эта причина может «испортить» самую качественную модель. Действительно, при правильном выборе формы модели, скрупулезном подборе объясняющих переменных все равно невозможно спрогнозировать поведение каждого индивидуума.
Таким образом, случайный член является отражением влияния всех описанных выше причин и не только их. Этот список может быть дополнен.
Решение задачи построения качественного уравнения регрессии, соответствующего эмпирическим данным и целям исследования, является достаточно сложным и многоступенчатым процессом. Его можно разбить на три этапа:
Выбор формулы связи переменных называется спецификацией уравнения регрессии. В случае парной регрессии выбор формулы обычно осуществляется по графическому изображению реальных статистических данных в виде точек в декартовой системе координат, которое называется корреляционным полем (диаграммой рассеивания) (рис. 4.1).
Рис. 4.1
На рис. 4.1 представлены три ситуации.
На графике 4.1, взаимосвязь между X и Y близка к линейной, и прямая 1 достаточно хорошо соответствует эмпирическим точкам. Поэтому в данном случае в качестве зависимости между X и Y целесообразно выбрать линейную функцию .