Автор работы: Пользователь скрыл имя, 18 Января 2014 в 14:42, реферат
Функция издержек определяется как минимальные издержки получения данного объема выпуска. Часто бывает важно отличать минимальные издержки для случая, когда фирма может изменять количества всех используемых ею факторов производства, от минимальных издержек для случая, когда фирма может изменять количества лишь некоторых факторов производства.
Уральский Федеральный Университет
имени первого Президента России Б.Н. Ельцина
Высшая школа экономики и менеджмента
Департамент НОЦ ИНЖЕК
Реферат
Минимизация издержек и максимизация прибыли
по предмету: Экономическая теория
Преподаватель Семененко В. В.
Курс, группа 1 курс, ЭМ-132701
Студент Гросс Р. В.
Екатеринбург
2013
Правило минимизации издержек и условия максимизации прибыли
Долгосрочные и краткосрочные издержки
Функция издержек определяется как минимальные издержки получения данного объема выпуска. Часто бывает важно отличать минимальные издержки для случая, когда фирма может изменять количества всех используемых ею факторов производства, от минимальных издержек для случая, когда фирма может изменять количества лишь некоторых факторов производства.
Мы определили короткий период как
период, в котором некоторые из
факторов производства должны использоваться
в постоянном количестве. В длительном
периоде все факторы
технология характеризуется
Предположим вначале, что мы имеем дело с естественным случаем постоянной отдачи от масштаба. Представьте, что мы решили задачу минимизации издержек для производства одной единицы выпуска, поэтому нам известна функция единичных издержек.
В случае возрастающей отдачи от масштаба оказывается, что с возрастанием выпуска издержки возрастают медленнее, чем при линейной зависимости. Если фирма решает произвести выпуск в два раза больше, она может сделать это при менее чем удвоенных издержках, при условии, что цены факторов остаются постоянными. Это естественное следствие идеи возрастающей отдачи от масштаба: если фирма удваивает используемое количество факторов, то она более чем удвоит выпуск. Следовательно, если она хочет произвести выпуск вдвое больше, она сможет сделать это, используя менее чем в два раза больше каждого фактора.
Однако удвоение используемого количества каждого фактора увеличит издержки ровно в два раза. Поэтому увеличение используемого количества каждого фактора менее чем вдвое приведет к возрастанию издержек менее чем в два раза: это говорит нам о том, что функция издержек с ростом выпуска будет возрастать медленнее, чем при линейной зависимости.
Аналогичным образом, если технология
характеризуется убывающей
Эти факты могут быть выражены с позиций поведения функции средних издержек. Функция средних издержек — это просто издержки на единицу производства y единиц выпуска.
Фирма, осуществляющая свою деятельность с использованием двух переменных частично взаимозаменяемых факторов, сталкивается с проблемой оптимального выбора комбинации ресурсов при каждом заданном объеме выпуска продукции. Очевидно, что фирма, максимизирующая прибыль, будет стремиться выбрать такое сочетание ресурсов, которое окажется самым дешевым. Таким образом, задача сводится к тому, чтобы минимизировать издержки фирмы для каждого заданною объема производства.
Для решения поставленной задачи необходимо ввести понятие изокосты. Изокоста является одновременно и линией равных издержек, и линией бюджетного ограничения фирмы.
Изокоста строится следующим образом. Допустим, что бюджет фирмы для закупки факторов, например, капитала и труда, составляет 1000 руб. Цена 1 ед. капитала равна 500 руб., а 1 ед. труда - 250 руб. Если в рамках заданного бюджета фирма затратит деньги на покупку только одного из двух факторов, то она сможет купить либо 2 ед. капитала, либо 4 ед. труда. Отметим на графике точки, соответствующие этой комбинации факторов (см. рис. 10.6а ). Соединив эти точки, мы получим изокосту.
Любая точка на изокосте показывает такое сочетание двух факторов, при котором совокупные расходы на их приобретение будут равны. Изоко-сты, изображенные на рис.10.6., описываются следующим уравнением:
В = РXК + PLXL (15), где
В - бюджет фирмы, предназначенный для закупки факторов;
Рк- цена единицы капитала;
К - количество капитала;
PL- цена единицы труда;
L - количество труда.
Наклон изокосты равен отношению цен используемых факторов умноженному на (-1), так как изокоста имеет отрицательный наклон. Иначе говоря, если фирма увеличивает количество одного фактора, то она должна соответственно сократить использование другого, чтобы сохранить неизменными совокупные расходы на приобретение факторов, т. е. PLXAL = -(Рк.х- ДК). Отсюда следует, что
-АК/ AL = Р/ Рк (16)
Любое изменение цены на один из двух используемых ресурсов ведет к изменению наклона изокосты. В нашем примере наклон изокосты равен -0,5: Р/ Рк =250 / 500 х (-1) = -0,5. Предположим, что цена 1ед. труда возросла до 400 руб., а иена 1ед. капитала не изменилась. В этом случае наклон изокосты будет равен -0,8. Как видно из рис.10.66, изокоста, отражающая новое соотношение цен на используемые ресурсы, имеет более крутой вид.
В том случае, когда изменяется заданная величина бюджета фирмы, предназначенного на покупку ресурсов, изокосты сдвигаются влево или вправо в зависимости от того, уменьшилась или возросла сумма бюджета (см. рис. 10.6а).
Для ответа на поставленный выше вопрос, какое сочетание факторов для каждого заданного объема выпуска является самым дешевым, необходимо совместить карту изоквант с изокостами. Точки касания изокост с изоквантами покажут оптимальное, с точки зрения затрат, сочетание факторов для каждого заданного объема выпуска продукции (см. рис. 10.7).
Комбинация факторов в точке А обеспечит наименьшие издержки при объеме выпуска продукции, равном Q в точке В ~ объеме, равном Q2; в точке С- объеме, равном Q3 Все другие возможные комбинации факторов, принадлежащие изоквантам с объемом производства соответственно Qi Q2 Qs лежат на более высоких линиях бюджетного ограничения. Соединив точки А, В, С мы получим кривую, показывающую оптимальные комбинации ресурсов при существующих ценах на них для каждого заданного объема выпуска продукции. Принимая решение об объемах производства, фирма будет двигаться вдоль данной кривой, которую принято называть траекторией роста. Тот факт, что минимизация издержек достигается в точке касания изокосты и изокван-ты, позволяет сделать важный экономический вывод. Как известно, наклон изокосты равен отношению цен на факторы (PL / PK), а наклон изокванты равен MRTS, которая вычисляется по формуле (14). В точке касания наклон изокосты равен наклону изокванты. Следовательно, равновесие достигается тогда, когда отношение цен на факторы равно отношению их предельных продуктов, т. е.
PL/PK=MPL/MPK (17)
Соответственно, отношения предельных продуктов факторов к ценам последних должны быть равны между собой:
MPL/PL=MPK/PK (18)
Рис. 10.7. Минимизация издержек для каждого заданного объёма производства
С помощью уравнения (18) мы можем сформулировать правило минимизации издержек для каждого заданного объема выпуска продукции: оптимальное сочетание факторов, используемых в процессе производства, достигается тогда, когда последний затраченный рубль на покупку каждого фактора дает одинаковый прирост общего выпуска продукции. С точки зрения рационального экономического поведения, это означает, что относительно более дорогой фактор производства замещается относительно более дешевым. Так, если MPL / PL > МРК / РK то фирма минимизирует свои издержки путем замены капитала трудом. В ходе этой замены предельный продукт труда будет уменьшаться, а предельный продукт капитала расти. Замена будет осуществляться до тех пор, пока не будет достигнуто равенство взвешенных по соответствующим ценам предельных продуктов факторов. И наоборот, если МРL / PL < МРК / РKто фирме следует замещать труд капиталом для достижения равенства (18).
Для иллюстрации данных положений рассмотрим условный числовой пример. Предположим, что единица труда и единица капитала имеют одну и ту же цену, равную 100 руб. При этом фирма использует 4 ед. труда и 9 ед. капитала. Предельный продукт четвертой единицы труда и девятой единицы капитала равны соответственно 12 и 6 ед. Подставив в уравнение (18) числовые значения, получим следующее неравенство: 12/100 > 6/100. Данная комбинация факторов не соответствует требованиям правила минимизации издержек, т. е. не является оптимальной. Последний рубль, затраченный на приобретение дополнительной единицы труда, дает прирост продукции, равный 0,12 ед., а последний рубль, затраченный на приобретение дополнительной единицы капитала, только 0,06 ед. В этом случае фирме для увеличения выпуска продукции при тех же самых затратах следует заменить относительно более дорогой фактор относительно более дешевым. Другими словами, нужно увеличить количество применяемого труда и уменьшить количество используемого капитала. Замещение капитала трудом необходимо проводить до тех пор, пока отношение предельного продукта каждого фактора к их ценам не будет равно. Предположим, что в нашем примере предельные продукты шестой единицы труда и седьмой единицы капитала окажутся равными и составят 10 ед. продукции. В этом случае фирма обеспечивает минимизацию издержек при заданном объеме производства или, что одно и то же, увеличивает выпуск продукции при тех же самых затратах.
Однако минимизация издержек при заданном объеме производства не означает, что данный объем обеспечивает фирме максимальную прибыль.
Минимизация издержек есть обязательное, но недостаточное условие для максимизации прибыли. Разница между минимизацией издержек и максимизацией прибыли заключается в следующем: при достижении оптимальной комбинации факторов для любого объема выпуска во внимание принимаются цены факторов и их предельная производительность. При формулировке условий максимизации прибыли необходимо учитывать и такую величину, как предельный продукт фактора в денежном выражении, отражающий спрос на продукцию, производимую с помощью этих факторов. Это связано с производным характером спроса на факторы.
Как же можно определить объем производства,
при котором фирма
MRPL/PL =MRPK/PK = 1 (19)
Соблюдение этого условия означ
Информация о работе Минимизация издержек и максимизация прибыли