Автор работы: Пользователь скрыл имя, 18 Июня 2014 в 11:22, реферат
Проблема изучения взаимосвязей экономических показателей является одной из важнейших в экономическом анализе. Любая экономическая политика заключается в регулировании экономических переменных, и она должна основываться на знании того, как эти переменные влияют на другие переменные, являющиеся ключевыми для принимающего решение политика. Так, в рыночной экономике нельзя непосредственно регулировать темп инфляции, но на него можно воздействовать средствами бюджетно-налоговой и кредитно-денежной политики.
В наиболее общем виде в области изучения взаимосвязей исследователя интересует количественная оценка их наличия и направления, а также характеристика силы и формы влияния одних факторов на другие. Для ее решения применяется две группы методов, одна из которых включает в себя методы корреляционного анализа, а другого - регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно - регрессионный анализ, что объясняется наличием целого ряда вычислительных процедур, взаимодополнения при интерпретации результатов и др.
1. Спецификация, смысл и оценка параметров линейной регрессии и корреляция
2. Оценка существенности параметров линейной регрессии и корреляции. Расчет доверительных интервалов.
Заключение
Список использованной литературы
Отрицательные значения указывают на обратную связь, положительные - на прямую. При r = 0 линейная связь отсутствует. Чем ближе коэффициент корреляции по абсолютной величине к единице, тем теснее связь между признаками. И, наконец, при r = ±1 - связь функциональная.
По направлению выделяют связь прямую и обратную. При прямой связи с увеличением или уменьшением значений факторного признака происходит увеличение или уменьшение значений результативного. В случае обратной связи значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением факторного признака.
По аналитическому выражению выделяют связи прямолинейные и криволинейные. Если статистическая связь между явлениями может быть приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражается уравнением какой-либо кривой линии (параболы, гиперболы, показательной и др.), то такую связь называют криволинейной.
Графически взаимосвязь двух признаков отображается с помощью поля корреляции. В системе координат по оси абсцисс откладываются значения факторного признака, а на оси ординат - результативного. Каждое пересечение линий, проводимых через эти оси, обозначается точкой. Чем сильнее связь между признаками, тем теснее будут группироваться точки вокруг определенной линии, выражающей форму связи.
Квадрат линейного коэффициента корреляции r2 называется линейным коэффициентом детерминации. Из определения коэффициента детерминации очевидно, что его числовое значение всегда заключено в пределах от 0 до 1, то есть 0 ≤ r2 ≤ 1. Степень тесноты связи полностью соответствует теоретическому корреляционному отношению, которое является более универсальным показателем тесноты связи по сравнению с линейным коэффициентом корреляции.
Оценку качества модели дают с помощью скорректированной средней ошибки аппроксимации [4]:
Оценка значимости уравнения регрессии в целом дается с помощью F-критерия Фишера. При этом выдвигается нулевая гипотеза, что коэффициент регрессии равен нулю, следовательно, фактор х не оказывает влияния на результат у. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера. Fфакт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
, где n – число единиц совокупности.
Fтабл – это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости α. Уровень значимости α – вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно α принимается равной 0,05 или 0,01.
Если Fфакт > Fтабл , то Н0 гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fфакт < Fтабл, то гипотеза Н0 не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:
; ;
Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:
;
Сравнивая фактическое и табличное значения t-критерия Стьюдента принимаем или отвергаем гипотезу.
Если tфакт > tтабл , то Н0 гипотеза отклоняется, т.е. а0, а1 и rxy не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х. Если tфакт < tтабл, то Н0 гипотеза не отклоняется и признается случайная природа формирования а0, а1 и rxy.
Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством
Для расчета доверительного интервала определяем предельную ошибку Δ для каждого показателя:
Δа0= tтаблmа0; Δа1= tтаблmа1
Формулы для расчета доверительных интервалов имеют следующий вид:
γа0=а0± Δа0; γа0min= а0-Δа0; γа0mах= а0+Δа0
γа1=а1± Δа1; γа1min= а1-Δа1; γа1mах= а1+Δа1
Если в границы доверительного интервала попадает нуль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, т.к. он не может одновременно принимать и положительное, и отрицательное значения.
Прогнозное значение ур определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения хр. Вычисляется средняя стандартная ошибка прогноза [5]:
, где
и строится доверительный интервал прогноза:
; ; ,
где
Корреляционно-регрессионный анализ как общее понятие включает в себя измерение тесноты, направления связи и установление аналитического выражения (формы) связи.
Наиболее разработанной в теории статистики является методология парной корреляции, рассматривающая влияние вариации факторного признака х на результативный у и представляющая собой однофакторный корреляционный и регрессионный анализ.
Регрессионный анализ своей целью имеет вывод, определение (идентификацию) уравнения регрессии, включая статистическую оценку его параметров. Уравнение регрессии позволяет найти значение зависимой переменной, если величина независимой или независимых переменных известна. Ряд авторов считают корреляционный анализ частью регрессионного анализа, а другие полагают, что регрессионный анализ является частью корреляционного, как общей теории взаимосвязи между случайными величинами.
Практически, речь идет о том, чтобы анализируя множество точек на графике (т.е. множество статистических данных), найти линию, по возможности, точно отражающую заключенную в этом множестве закономерность (тренд, тенденцию) - линию регрессии.