Автор работы: Пользователь скрыл имя, 15 Декабря 2010 в 22:31, реферат
В последнее время в разных странах активно ведется поиск источников энергии, альтернативных ископаемому топливу. Для России эта проблема не стоит остро, однако стоит заметить, что и в странах с высокоразвитой энергетикой, имеющих собственные ресурсы, специалисты проводят такие изыскания. Среди эффективных способов получения энергии может стать получение энергии из отходов.
ВВЕДЕНИЕ 3
1. Топливное использование твердых бытовых отходов (ТБО). 3
2. Биогазовая технология переработки отходов животноводства. 7
ЗАКЛЮЧЕНИЕ 12
СПИСОК ЛИТЕРАТУРЫ 14
Министерство образования и науки Российской Федерации
Российский
государственный университет нефти и
газа имени И.М.Губкина
Реферат
на тему
«Способы получения
энергии из отходов»
Подготовил: студент группы РН-08-9
Москва,
2010
Содержание
ВВЕДЕНИЕ 3
1. Топливное использование твердых бытовых отходов (ТБО). 3
2. Биогазовая технология переработки отходов животноводства. 7
ЗАКЛЮЧЕНИЕ 12
СПИСОК ЛИТЕРАТУРЫ 14
В последнее время в разных странах активно ведется поиск источников энергии, альтернативных ископаемому топливу. Для России эта проблема не стоит остро, однако стоит заметить, что и в странах с высокоразвитой энергетикой, имеющих собственные ресурсы, специалисты проводят такие изыскания. Среди эффективных способов получения энергии может стать получение энергии из отходов.
Одним из эффективных способов получения энергии в будущем может стать использование в качестве топлива твердых бытовых отходов (ТБО). Преимущество бытовых отходов заключается в том, что их не надо искать, не надо добывать, однако в любом случае они должны быть уничтожены - что требует больших денежных средств. Поэтому рациональный подход здесь позволяет не только получить дешевую энергию, но и избежать лишних затрат.
Целенаправленное промышленное использование твердых бытовых отходов как топлива началось со строительством первого «мусоросжигательного заведения» близ Лондона в 1870 году. Однако активное применение ТБО как энергетического сырья началось только в середине 1970-х годов в связи с углублением энергетического кризиса. Было подсчитано, что при сжигании одной тонны отходов можно получить 1300-1700 кВт/ч тепловой энергии или 300-550 кВт/ч электроэнергии.
Именно в этот период началось строительство крупных мусоросжигательных заводов в Мадриде, Берлине, Лондоне, а также в странах с относительно малой площадью и высокой плотностью населения. К 1992 году в мире действовало около 400 заводов, на которых применялось сжигание ТБО с производством пара и выработкой электроэнергии. К 1996 году их количество достигло 2400.
В нашей стране термическая переработка ТБО началась с 1972 года, когда в восьми городах СССР было установлено 10 мусоросжигательных заводов первого поколения. Эти заводы были практически без газоочистки и почти не использовали вырабатываемое тепло. В настоящее время они морально устарели и не отвечают современным требованиям по экологическим показателям. В связи с этим большая часть этих заводов закрыта, а остальные подлежат реконструкции.
В Москве было построено три таких предприятия. Мусоросжигательный завод № 2 был построен в 1974 году для сжигания несортированных твердых бытовых отходов в объеме 73 тыс. тонн в год. Он имел две технологические линии, включающие в себя котлы французской фирмы «КНИМ» и электрофильтры.
Решением правительства Москвы о реконструкции МСЗ-2 предписывалось увеличение мощности завода до 130 тыс. тонн отходов в год с одновременным уменьшением количества вредных выбросов в окружающую среду и, тем самым, улучшением экологической обстановки в районе предприятия. Для выполнения указанной задачи была опять привлечена французская фирма «КНИМ», которая должна была разработать и поставить три модернизированные технологические линии производительностью по сжигаемым ТБО в 8,33 т/ч каждая.
Кроме того, предусматривалось использование тепла, получаемого при сжигании твердых бытовых отходов, для выработки электроэнергии [4].
По результатам эксплуатации реконструированной первой очереди завода, состоящей из двух технологических линий, можно констатировать, что все указанные выше требования выполнены, а именно:
1. Производительность МСЗ увеличена до 80 тыс. тонн ТБО в год, а с пуском в эксплуатацию третьей технологической линии - до 130 тыс. тонн в год.
2. Снижены до европейских нормативов (0,1 нг/нм3) выбросы диоксинов и фуранов: во-первых, за счет оптимизации горения отходов на колосниковой решетке «Мартин»; во-вторых, за счет увеличения высоты топки котла, что обеспечивает необходимое двухсекундное пребывание дымовых газов при температуре выше 850°C для разложения диоксинов на фураны, образующиеся при горении; и в-третьих, за счет ввода в дымовые газы активированного угля, абсорбирующего вторично образованные диоксины.
3. Обеспечены европейские нормативы по очистке дымовых газов от S02, НСl, НF благодаря установке в технологической схеме сжигания ТБО «полусухого» реактора.
4. Достигнута за счет установки рукавного фильтра высокая степень очистки дымовых газов от летучей золы и продуктов газоочистки: концентрация пыли составляет менее 10 мг/нм3.
5. Благодаря применению технологии по подавлению оксидов азота (NOx), разработанной РГУ нефти и газа им. И. М. Губкина, полученные показатели по их выбросам находятся на уровне лучших зарубежных образцов (менее 80 мг/нм3).
6. При выполнении реконструкции завода произведена установка трех турбогенераторов мощностью по 1,2 МВт каждый, что обеспечило его функционирование без внешнего электроснабжения, с передачей излишков энергии в городскую сеть.
Принципиально новый для России мусоросжигательный завод производительностью 300 тыс. тонн ТБО в год был построен в Москве в начале 2000-х. Завод состоит из отделений подготовки и сортировки отходов, сжигания неутилизируемой части ТБО, очистки дымовых газов от вредных примесей, переработки золы и шлака, энергоблока и других вспомогательных отделений. Технологическая схема завода по переработке неутилизируемой части отходов включает в себя три технологические линии с печами кипящего слоя, котлами производительностью 22-25 т/ч, газоочистным оборудованием и двумя турбинами по 6 МВт каждая.
На заводе внедрены ручная и механическая сортировка ТБО и их дробление. Технология позволяет, во-первых, отобрать ценное сырье для его вторичной переработки, во-вторых, отобрать пищевую фракцию отходов для последующего компостирования; в-третьих, отобрать сырье, представляющее экологическую опасность при сжигании; и наконец, повысить теплотехнические и экологические показатели сырья, предназначенного для сжигания. Благодаря такой подготовке низшая теплота сгорания ТБО достигает 9 МДж/кг, а по содержанию золы, влаги, серы и азота характеристики практически соответствуют характеристикам подмосковных бурых углей.
Однако следует отметить, что низкие параметры пара, применяемые на отечественных мусоросжигательных заводах, существенно снижают удельные показатели по выработке электроэнергии по сравнению с паросиловыми электростанциями. Применение аналогичных мощностей и параметров пара на мусоросжигательных заводах ограничено свойствами сырья: кусковым топливом, низкой температурой плавления золы и коррозионными свойствами дымовых газов, получаемых при сжигании.
Существенного повышения эффективности применения ТБО как топлива для выработки электроэнергии и достижения удельных показателей, близких к серийно применяемым ТЭС, по всей видимости, можно достигнуть за счет частичного замещения энергетического топлива бытовыми отходами.
То есть предлагается разработка совмещенной (интегральной) компоновки ТЭС для сжигания природного топлива и твердых бытовых отходов. Доля ТБО по количеству тепла может составлять примерно 10% от тепловой мощности котла. В этом случае только за счет повышенных параметров пара и увеличенной мощности котлов и турбин эффективность использования бытовых отходов повысится в 2-3 раза.
Существенный экономический эффект может быть получен за счет снижения капитальных вложений благодаря использованию существующей на ТЭС инфраструктуры и сокращению расходов на газоочистное оборудование [4].
Немаловажным экономическим фактором является и то, что энергетическое топливо, в том числе и бурый уголь, имеющий практически равноценные энергетические показатели с твердыми бытовыми отходами, надо покупать, а ТБО, напротив, принимается с денежной доплатой.
И главное - анализ технико-экономических показателей, полученных при частичном, десятипроцентном, замещении энергетического топлива на одном из стандартных блоков, работающих на природном газе или буром угле, показывает, что в этом случае стоимость природного газа, используемого на ТЭС, может быть полностью покрыта «доходами» от приема ТБО.
Одним из «забытых» видов сырья является и биогаз, использовавшийся еще в Древнем Китае и вновь «открытый» в наше время.
В основе биогазовых технологий лежат сложные природные процессы биологического разложения органических веществ в анаэробных условиях под воздействием особой группы анаэробных бактерий. Эти процессы сопровождаются минерализацией азотсодержащих, фосфорсодержащих и калийсодержащих органических соединений с получением минеральных форм азота, фосфора и калия, наиболее доступных для растений, с полным уничтожением болезнетворной микрофлоры, яиц гельминтов, семян сорняков, специфических фекальных запахов, нитратов и нитритов.
Один микробиологический способ обезвреживания навоза, да и любых других органических остатков, известен давно - это компостирование. Отходы складывают в кучи, где они под действием микроорганизмов-аэробов понемногу разлагаются. При этом куча разогревается примерно до 60°С и происходит естественная пастеризация - погибает большинство микробов.
Но качество удобрения при этом страдает: пропадает до 40 % содержащегося в нем азота и немало фосфора. Пропадает и энергия, потому что впустую рассеивается тепло, выделяющееся из недр кучи, - а в навозе, между прочим, заключена почти половина всей энергии, поступающей на ферму с кормами. Отходы же от свиноферм для компостирования просто не годятся: слишком они жидкие [2].
Но возможен и другой путь переработки органического вещества - сбраживание без доступа воздуха, или анаэробная ферментация. Именно такой процесс происходит в природном биологическом реакторе, заключенном в брюхе каждой буренки, пасущейся на лугу. Там, в коровьем преджелудке, обитает целое сообщество микробов. Одни расщепляют клетчатку и другие сложные органические соединения, богатые энергией, и вырабатывают из них низкомолекулярные вещества, которые легко усваивает коровий организм. Эти соединения служат субстратом для других микробов, которые превращают их в газы - углекислоту и метан. Одна корова производит в сутки до 500 литров метана; из общей продукции метана на Земле почти четверть - 100-200 млн. тонн в год! - имеет такое "животное" происхождение.
Метанообразующие бактерии - во многом весьма замечательные создания. У них необычный состав клеточных стенок, совершенно своеобразный обмен веществ, свои, уникальные ферменты и коферменты, не встречающиеся у других живых существ. И биография у них особая - их считают продуктом особой ветви эволюции.
Примерно такое сообщество микроорганизмов и приспособили латвийские микробиологи для решения задачи - переработки отходов свиноферм. По сравнению с аэробным разложением при компостировании анаэробы работают медленнее, но зато гораздо экономнее, без лишних энергетических потерь. Конечный продукт их деятельности - биогаз, в котором 60-70 % метана,- есть не что иное, как концентрат энергии: каждый кубометр его, сгорая, выделяет столько же тепла, сколько килограмм каменного угля, и в два с лишним раза больше, чем килограмм дров.
Во всех прочих отношениях анаэробная ферментация ничуть не хуже компостирования. А самое важное - что таким способом прекрасно перерабатывается навоз с ферм. В процессе биологической, термофильной, метангенерирующей обработки органических отходов образуются экологически чистые, жидкие, высокоэффективные органические удобрения. Эти удобрения содержат минерализованный азот в виде солей аммония (наиболее легко усвояемая форма азота), минерализованные фосфор, калий и другие, необходимые для растения биогенные макро- и микроэлементы, биологически активные вещества, витамины, аминокислоты, гуминоподобные соединения, структурирующие почву.