Автор работы: Пользователь скрыл имя, 12 Октября 2012 в 17:15, шпаргалка
Работа содержит ответы на вопросы по дисциплине "Основы экологии".
Обычно в
наземных биоценозах общая масса
продуцентов больше, чем каждого
последующего звена. В свою очередь,
общая масса консументов
В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.
В целом для наземных биогеоценозов, где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.
Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.
Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.
В противоположность пирамидам чисел и биомассы, отражающим статику системы (количество организмов в данный момент), пирамида энергии отражая картину скоростей прохождения массы пищи (количества энергии) через через каждый трофический уровень пищевой цепи, дает наиболее полное представление о функциональной организации сообществ.
На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь типичный вид с широким основанием и суживающейся верхушкой. При построении пирамиды энергии в ее основание часто добавляют прямоугольник, показывающий приток солнечной энергии.
Пирамиды энергии позволяют сравнивать энергетическую значимость популяций внутри экосистемы и иллюстрировать количественные отношения в отдельных, представляющих особый интерес частях экосистем, например, в звеньях жертва-хищник или хозяин-паразит.
В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.
Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.
Принцип Ле Шателье — Брауна (1884 г.) — если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.
Анри Ле Шателье (Франция) сформулировал этот термодинамический принцип подвижного равновесия, позже обобщённый Карлом Брауном.
Экосистема может быть описана комплексной схемой прямых и обратных связей, поддерживающих гомеостаз системы в некоторых пределах параметров окружающей среды. (Гомеостаз - саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия. Стремление системы воспроизводить себя, восстанавливать утраченное равновесие, преодолевать сопротивление внешней среды.) Таким образом, в некоторых пределах экосистема способна при внешних воздействиях поддерживать свою структуру и функции относительно неизменными. Обычно выделяют два типа гомеостаза: резистентный — способность экосистем сохранять структуру и функции при негативном внешнем воздействии (см. Принцип Ле Шателье — Брауна) и упругий — способность экосистемы восстанавливать структуру и функции при утрате части компонентов экосистемы. В англоязычной литературе используются сходные понятия: локальная устойчивость — англ. local stability (резистентный гомеостаз) и общая устойчивость — англ. global stability (упругий гомеостаз)
Коралловые рифы — пример хрупкости биоразнообразия
Иногда выделяют третий аспект устойчивости — устойчивость экосистемы по отношению к изменениям характеристик среды и изменению своих внутренних характеристик. В случае, если экосистема устойчиво функционирует в широком диапазоне параметров окружающей среды и/или в экосистеме присутствует большое число взаимозаменяемых видов (то есть, когда различные виды, сходные по экологическим функциям в экосистеме, могут замещать друг друга), такое сообщество называют динамически прочным (устойчивым). В обратном случае, когда экосистема может существовать в весьма ограниченном наборе параметров окружающей среды, и/или большинство видов незаменимы в своих функциях, такое сообщество называется динамически хрупким (неустойчивым). Необходимо отметить, что данная характеристика в общем случае не зависит от числа видов и сложности сообществ. Классическим примером может служить Большой Барьерный риф у берегов Австралии (северо-восточное побережье), являющийся одной из «горячих точек» биоразнообразия в мире — симбиотические водоросли кораллов, динофлагелляты, весьма чувствительны к температуре. Отклонение от оптимума буквально на пару градусов ведёт к гибели водорослей, а до 50-60 % (по некоторым источникам до 90 %) питательных веществ полипы получают от фотосинтеза своих мутуалистов.
Различные положения равновесия систем (иллюстрация)
У экосистем
существует множество состояний, в
которых она находится в
Экологи́ческие фа́кторы — свойства среды обитания, оказывающие какое-либо воздействие на организм. Индифферентные элементы среды, например, инертные газы, экологическими факторами не являются.
Экологические факторы отличаются значительной изменчивостью во времени и пространстве. Например, температура сильно варьирует на поверхности суши, но почти постоянна на дне океана или в глубине пещер.
Приро́дные ресу́рсы — естественные ресурсы: тела и силы природы, которые на данном уровне развития производительных сил и изученности могут быть использованы для удовлетворения потребностей человеческого общества.
Приро́дные ресу́рсы — совокупность объектов и систем живой и неживой природы, компоненты природной среды, окружающие человека и которые используются в процессе общественного производства для удовлетворения материальных и культурных потребностей человека и общества.
По происхождению:
По видам хозяйственного использования:
По виду исчерпаемости:
По степени заменимости:
По критерию использования:
Демографическая проблема. Демографический взрыв во всем мире уже пошел на убыль. С целью решения демографической проблемы ООН приняла «Всемирный план действий в области народонаселения»,
в осуществлении которого участвуют и географы, и демографы. При этом прогрессивные силы исходят из того, что программы планирования семьи могут содействовать улучшению воспроизводства населения. Для этого одной демографической политики недостаточно. Она должна сопровождаться улучшением экономических и социальных условий жизни людей.
Проблема нехватки продуктов питания) (продовольственная проблема). В настоящее время, по данным ООН, почти 2/3 человечества проживает в странах, где ощущается постоянная нехватка продуктов. Для решения этой проблемы человечество должно полнее использовать
ресурсы растениеводства, животноводства и рыболовства. При этом оно может идти двумя путями. Первый – это экстенсивный путь, который заключается в дальнейшем расширении пахотных, пастбищных и рыбопромысловых угодий. Второй – интенсивный путь, который заключается в повышении биологической продуктивности существующих угодий. Решающее значение здесь будут иметь биотехнология, использование новых высокоурожайных сортов, дальнейшее развитие механизации, химизации и мелиорации.
проблема «глобального изменения климата» (иногда говорят «глобального потепления») сегодня считается одной из самых острых экологических проблем человечества.
Глоба́льное потепле́ние — процесс постепенного увеличения среднегодовой температуры атмосферы Земли и Мирового океана в XX и XXI веках.
Главной движущей силой климата является Солнце. Например, неравномерное нагревание земной поверхности (сильнее у экватора) является одной из главных причин ветров и океанических течений, а периоды повышенной солнечной активности сопровождаются потеплением и магнитными бурями.
Кроме того на климат влияют изменение орбиты Земли, ее магнитного поля, размеров материков и океанов, извержения вулканов. Все это -естественные причины изменения климата. До недавнего времени они, и только они, определяли изменения климата, в том числе начало и конец долговременных климатических циклов, таких как ледниковые периоды. Солнечной и вулканической активность можно объяснить половину температурных изменений до 1950 года (солнечная активность приводит к повышению температуры, а вулканическая – к снижению).