Автор работы: Пользователь скрыл имя, 09 Марта 2013 в 17:10, курсовая работа
Гальваническое производство является одним из крупнейших потребителей воды, а его сточные воды – одними из самых токсичных и вредных. В связи с этим, перед гальваническим производством встает ряд важных проблем. Снижению количества сточных вод может способствовать применение новой технологии производства. Это потребует значительных материальных затрат, что нереально на данном уровне развития экономики страны. В результате остается другой путь сохранения окружающей среды – повышение эффективности очистки сточных вод.
Фильтр-пресс рамный – технологическое оборудование, предназначенное для обезвоживания шлама, образующегося в процессе очистки сточных вод гальванического производства, производства печатных плат, текстильного производства, отделочного производств и др.
Суспензия подается
диафрагменным насосом под
Основным элементом рамного пресс фильтра является набор фильтровальных плит из полипропилена (химически стойкого и износостойкого пластика), установленных на опорах из нержавеющей стали между прижимной и впускной системами. На первой фильтровальной плите закреплен отъезжающий гидроцилиндр со стопорной гайкой на его поршневом штоке. На несущей раме фильтр пресса смонтирован гидравлический либо автоматический (пневматический привод) гидравлический упор для гидравлического цилиндра, зажимающий фильтровальные плиты. Отвод фильтрата закрытый.
Фильтр-прессы рамные имеют следующие преимущества в сравнении с прочим оборудованием для обезвоживания шлама:
Технологическая схема очистки сточных вод: Е1, Е2, Е3 – накопительная ёмкость; Н1, Н2 – насос; Д1, Д2, – ёмкость приготовления раствора реагента; НД1, НД2, НД3 – дозирующий насос; Р1 – реактор смешения; ЭФ – Электрофлотационный модуль; ИПТ – источник питания электрофлотационного модуля; ФП – фильтр пресс; КФ – кварцевый фильтр; ИФ – ионообменный фильтр.
Система работает следующим образом: промывные и сточные воды гальванического производства подаются в накопительную емкость Е1. Из емкости Е1 стоки насосом Н1 подается в реактор Р1. В реактор Р1 для предварительной обработки сточных вод дозаторами НД2 и НД3 дозируются реагенты: раствор щелочи и флокулянта. Из реактора Р1 стоки поступают на электрофлотатор ЭФ, в котором по представленному ниже механизму осуществляется извлечение гидроксидов тяжелых металлов, нефтепродуктов и СПАВ. Из накопительной емкости Е2 в емкость Е1 дозатором НД1 дозируются отработанные технологические растворы. Из электрофлотатора очищенная вода поступает в сборную емкость Е3. Осветленная вода из сборной емкости Е3 подается насосом Н2 на механический фильтр КФ, и далее на ионообменные фильтры ИФ, в которых методом ионного обмена происходит извлечение следовых концентраций ионов тяжелых металлов до региональных требований ПДК по сбросам. После очистки вода сбрасывается в канализацию, либо может быть частично возвращена в технологический цикл на повторное использование для технических нужд предприятия (в соответствии с ГОСТ 9.314–90 вода 2-й категории).
Шлам подается для обезвоживания на фильтр-пресс ФП. Обезвоженный шлам влажностью не более 70% утилизируется.
Основным техническим узлом системы очистки является электрофлотатор, включающий в себя блок нерастворимых электродов, систему сбора шлама, источник постоянного тока и вытяжной зонт. Электрофлотатор представлен на Рис. 2. Работа аппарата основана на электрохимических процессах выделения водорода и кислорода за счет электролиза воды и флотационного эффекта. Установка работает, как в непрерывном, так и в периодическом режимах и обеспечивает извлечение взвешенных веществ, нефтепродуктов, ПАВ, ионов тяжелых металлов Cu2+, Ni2+, Zn2+, Cd2+, Cr3+, Al3+, Pb2+, Fe2+, Fe3+ Ca2+, Mg2+ и др. в виде гидроксидов и фосфатов.
Метод электрокоагуляция.
1. Назначение установки: очистка хромсодержащих и кислото-щелочных промывных сточных вод до требований ПДК по тяжелым металлам на слив в канализацию.
2. Сущность предлагаемой технологии: Для очистки кислотно-щелочных промывных сточных вод от металлов и солей предлагаются метод электрокоагуляции с последующим отстаиванием образующегося осадка.
3. Состав установки:
Сущность электрохимической обработки воды заключается в том, что при подаче напряжения постоянного тока на электроды начинается процесс растворения железных анодов. В результате электрохимической обработки в аппарате поз. ЭК осуществляется ряд процессов:
Образующиеся соединения нерастворимого гидроксида железа сорбируют на своей поверхности ионы тяжелых металлов и выпадают в осадок.
Исходные кислотно-щелочные воды поступают в сборник-накопитель Е0. Из накопителя Е0 насосом Н1 усредненный сток подается на электрокоагулятор ЭК, в котором по описанному выше механизму происходит восстановление ионов шестивалентного хрома и очистка от примесей тяжелых металлов. Предварительно из емкости Е2 (Е3) дозирующим насосом НД1 (НД2) подается раствор едкого натрия или кислоты для корректировки рН. Из электрокоагулятора водная суспензия направляется в отстойник поз. ТО для разделения суспензии на осветленную жидкость и осадок. Для ускорения процесса осаждения отстойник комплектуется тонкослойным модулем. Осветленная вода, сливается в емкость поз. Е1 и насосом Н2 подается на фильтр механической очистки Ф и затем на узел доочистки ИО, где с помощью ионного обмена вода очищается от следовых количеств тяжелых металлов, а затем направляется на слив в канализацию.
Осадок из электрокоагуляторов и отстойника поступает на фильтр-пресс поз. ФП, где обезвоживается, и с влажностью до 80% утилизируется.
Метод электрокоагуляция и обратный осмос (замкнутый водооборот).
1. Назначение установки: очистка хромсодержащих и кислото-щелочных промывных сточных вод с целью создания замкнутого водооборота (ГОСТ 9.314–90 кат.II. «Вода для гальванического производства»).
2. Сущность предлагаемой технологии: Для очистки кислото-щелочных и хромсодержащих промывных сточных вод от тяжелых металлов предлагается метод электрокоагуляции с последующим отстаиванием образующегося осадка и обратноосмотическим обессоливанием очищенной воды.
3. Состав установки:
4. Описание технологии:
Процесс протекает также, только после фильтра механической очистки Ф очищенная вода собирается в емкости Е4, откуда подается на вторую ступень очистки – мембранную установку.
Осадок из электрокоагуляторов и отстойника поступает на фильтр-пресс поз. ФП, где обезвоживается, и с влажностью до 80% утилизируется, а осветленная вода направляется в емкость Е4.
Для доочистки воды после электрокоагуляции с целью создания замкнутого водооборота (требование ГОСТ 9.314–90 категория) предлагается мембранная установка.
Технологическая схема включает основные узлы:
Осветленная вода с из емкости Е4 через фильтр тонкой очистки Ф1 насосом Н3 подается на первую ступень обратноосмотической мембранной установки ООМ1, укомплектованной рулонными мембранными элементами. В процессе разделения исходный поток делится на два: фильтрат – очищенная и обессоленная до требуемых показателей вода и концентрат, содержащий сконцентрированные извлекаемые примеси. Очищенная вода собирается в емкости Е5 (поставка Заказчика) и насосом Н6 подается на повторное использование на операции промывки. Концентрат первой ступени подвергается дополнительному доконцентрированию на второй ступени мембранной установки ООМ2. Для чего концентрат высоконапорным насосом Н4 подается на мембранные аппараты второй ступени, где происходит разделение потока на две части: фильтрат отводится в емкость Е4, где смешивается с исходным потоком, и концентрат, который направляется в емкость Е6, откуда далее насосом Н5 подается на выпарной аппарат ВА. Соли с влажностью до 50% подвергаются утилизации.
Очистка (доочистка) сточных вод от следов металлов
1. Сущность предлагаемой технологии: После вертикальных отстойников существующей схемы, осветленная вода перед сбросом ее в канализацию проходит дополнительно глубокую очистку на фильтрах с зернистой загрузкой с целью удаления следов тяжелых металлов. Очищенная вода направляется в резервуар чистой воды и далее на повторное использование (до 50% очищенной воды может быть использовано для промывки деталей, остальное – на другие технические нужды). Фильтр с зернистой загрузкой периодически (не чаще одного раза в две недели) подвергается обратноточной промывке, промывная вода возвращается в голову процесса. По мере исчерпания обменной емкости через 3–5 фильтроциклов адсорбент подвергается активации (р-ром Na2CO3 или MgSO4, активирующий раствор можно использовать до 20 раз). Узел регенерации включает в себя емкость для приготовления рабочих растворов и дозировочные насосы. Отработанные регенерирующие растворы направляются в накопитель (существующей схемы) и подвергаются очистке с основным потоком. Срок службы адсорбента не ограничен. При доочистке не образуются дополнительные отходы и отработанные растворы, объем осадка не увеличивается.
2. Состав установки: Фильтры напорные стальные, емкости, насосное оборудование, трубопроводы и запорная арматура.
Комбинирование
электрофлотации и ионного
Гальванические производства и производства печатных плат являются одними из наиболее водоемких; одновременно предприятия этих отраслей являются интенсивнейшими генераторами загрязнения сточных вод, что обусловливает необходимость резкого сокращения промышленных сточных вод, поступающих в водные объекты. При проектировании систем водообеспечения гальванических производств возникают проблемы оптимального подбора оборудования, технологии очистки воды, ее структуры, методов очистки.
Данная система очистки сточных вод является классической для очистных сооружений гальванических производств и производств печатных плат. Она включает в себя несколько стадий обработки промывных вод и отработанных концентрированных растворов электролитов. При наличии нескольких потоков сточных вод: кислотно-щелочные, хромсодержащие, циансодержащие, фторсодержащие – для обработки и обезвреживания каждого потока предусматривает отдельная первая стадия с усреднением сточной воды и концентрата в накопительной емкости, соответствующей обработки в реакторе и последующем смешивании потоков в реакторе флокуляторе для дальнейшей глубокой очистки. Рассмотрим стадии очистки сточной воды более подробно:
Информация о работе Проект участка очистки сточных вод гальванического производства