Автор работы: Пользователь скрыл имя, 08 Мая 2012 в 18:36, курсовая работа
Основным видом отходов в гальваническом производстве являются промывные воды смешанного состава, содержащие несколько видов тяжелых металлов, объединяющиеся с кислотно-щелочными.
Очищенная вода через патрубки
10 вытекает из аппарата. Пенный слой периодически
удаляется с поверхности
Модуль конструктивно разделен на 2 части продольной перегородкой, разделяющей потоки воды и шлама в электрофлотаторе. Такая конструкция позволяет использовать электрофлотатор для обработки, как двух различных стоков (при независимом подключении камер), так и одного общего стока (при параллельном подключении камер). Слив жидкости из электрофлотатора осуществляется через дренажные штуцера 3.
Интенсификация процесса флотации осуществляется путем дополнительного применения реагентов – коагулянтов и флокулянтов.
Технологическая схема очистки сточных вод
2.2 Описание технологической схемы
На Рис. 1. представлена технологическая схема очистки сточных вод гальванического цеха машиностроительного предприятия с последующим сбросом очищенной воды в систему городской канализации, либо возвратом для использования на технические нужды предприятия. Данная система очистки сточных вод рекомендуется для использования при проектировании новых очистных сооружений, либо реконструкции и модернизации действующих станций водоочистки в целях повышения их экономической эффективности и экологической безопасности.
Технологическая схема очистки сточных вод: Е1, Е2, Е3 – накопительная ёмкость; Н1, Н2 – насос; Д1, Д2, – ёмкость приготовления раствора реагента; НД1, НД2, НД3 – дозирующий насос; Р1 – реактор смешения; ЭФ – Электрофлотационный модуль; ИПТ – источник питания электрофлотационного модуля; ФП – фильтр пресс; КФ – кварцевый фильтр; ИФ – ионообменный фильтр.
Система работает следующим образом: промывные и сточные воды гальванического производства подаются в накопительную емкость Е1. Из емкости Е1 стоки насосом Н1 подается в реактор Р1. В реактор Р1 для предварительной обработки сточных вод дозаторами НД2 и НД3 дозируются реагенты: раствор щелочи и флокулянта. Из реактора Р1 стоки поступают на электрофлотатор ЭФ, в котором по представленному ниже механизму осуществляется извлечение гидроксидов тяжелых металлов, нефтепродуктов и СПАВ. Из накопительной емкости Е2 в емкость Е1 дозатором НД1 дозируются отработанные технологические растворы. Из электрофлотатора очищенная вода поступает в сборную емкость Е3. Осветленная вода из сборной емкости Е3 подается насосом Н2 на механический фильтр КФ, и далее на ионообменные фильтры ИФ, в которых методом ионного обмена происходит извлечение следовых концентраций ионов тяжелых металлов до региональных требований ПДК по сбросам. После очистки вода сбрасывается в канализацию, либо может быть частично возвращена в технологический цикл на повторное использование для технических нужд предприятия (в соответствии с ГОСТ 9.314–90 вода 2-й категории).
Шлам подается для обезвоживания на фильтр-пресс ФП. Обезвоженный шлам влажностью не более 70% утилизируется.
Основным техническим узлом системы очистки является электрофлотатор, включающий в себя блок нерастворимых электродов, систему сбора шлама, источник постоянного тока и вытяжной зонт. Работа аппарата основана на электрохимических процессах выделения водорода и кислорода за счет электролиза воды и флотационного эффекта. Установка работает, как в непрерывном, так и в периодическом режимах и обеспечивает извлечение взвешенных веществ, нефтепродуктов, ПАВ, ионов тяжелых металлов Cu2+, Ni2+, Zn2+, Cd2+, Cr3+, Al3+, Pb2+, Fe2+, Fe3+ Ca2+, Mg2+ и др. в виде гидроксидов и фосфатов.
2.3 Расчет материального баланса
Исходные данные для проектирования:
Рассчитать локальную
установку для очистки сточных
вод гальванического
Расход сточных вод |
1920 м3/сут |
Концентрация взвешенных веществ на входе |
250 мг/л |
Концентрация взвешенных веществ на выходе |
1,3 мг/л |
Концентрация тяжелых металлов на входе |
98 мг/л |
Концентрация тяжелых металлов на выходе |
0,6 мг/л |
Расход сточных вод=1920 м3/
1) Масса взвешенных веществ в загрязнённой сточной воде:
С взвешенных веществ =250 мг/л=0,25 г./л=250 г./м3
G взвешенных веществ =250*80=
2) Масса тяжелых металлов в загрязнённой сточной воде:
С тяжелых металлов =98 мг/л=0,098г/л=98г/м3
G тяжелых металлов =98*80=7840г/ч
3) Масса взвешенных веществ в очищенной сточной воде:
С взвешенных веществ =1,3 мг/л=0,0013г/л=1,3 г/м3
G взвешенных веществ =1,3*80=104 г./ч
4) Масса тяжелых металлов в очищенной сточной воде:
С тяжелых металлов =0,6 мг/л=0,0006г/л=0,6 г/м3
G тяжелых металлов =0,6*80=48 г./ч
5) Масса извлечённых взвешенных веществ:
G извлечённых в. в.= 20000–104=19896 г./ч
6) Масса извлечённых тяжёлых металлов:
Gизвлеч. тяж. Ме= 7840–48 =7792 г./ч
2.4 Расчет основного оборудования
Расчет электрофлотатора.
Материальные потоки в электрофлотаторе.
Исходные данные:
I = 50 А – токовая нагрузка на аппарат;
tоэл=25єС – температура электролита;
Вт=98%;
Расстояние между электродами 5 – 10 мм
Экспериментальные данные по составу воды, поступающей в аппарат:
Na2SO4=2000 мг/л, Скипидар=0,01 мг/л, Масло веретенное=5 мг/л, ПАВ «Брулин»=30 мг/л, K2Cr2O7 =0,02 мг/л
рН=8,5
Катодные реакции
H2O→H2 + ОН- – 2ē
Анодные реакции
2H2O→O2+4H++4ē
Определение расхода воды при электрофлотации, GH2O
где GH2O кг/ч – количество воды, вступившее в электрохимическую реакцию на электроде;
Вт – выход по току, доли единицы;
М = 18 – молекулярная масса воды;
26.8 – количество электричества, равная 1 Р, А-ч;
n = 4, 2 соответственно – количество электронов, участвующих в электрохимической реакции.
G1H2O = 0,0082 кг/ч – количество воды, вступившее в реакцию на аноде.
G2H2O = 0,0165 кг/ч – количество воды, вступившее в реакцию на катоде.
GH2O = G1H2O + G2H2O
GH2O = 0,0247 кг/ч
Определение количества образовавшихся газов
где кг/ч – количество образовавшегося водорода,
МН2 = 2 – молекулярная масса водорода;
n = 2 – количество электронов,
участвующих в
= 0,0019 кг/ч
где кг/ч – количество образовавшегося кислорода,
МO2 = 32 – молекулярная масса кислорода.
= 0,2195 кг/ч
Определение количества растворителя (воды), уносимого с газообразными продуктами
а) Определение количества растворителя, уносимого с водородом
где t0эл = 25 – температура электролита, °С;
22,4 л – объем одного г-моль газа при нормальных условиях;
р = 23,76 мм. рт. ст. = 23,76133 = 3167,2 Па = 31,672 – упругость водяного пара при температуре электролита, гПа;
ρр = 0,02304 – плотность паров растворителя при t0эл, г/л.
= 5,5246 10–4 кг/ч
б) Определение количества растворителя, уносимого с кислородом
где – количество образовавшегося кислорода, кг/ч.
= 2,7623 10–4 кг/ч
Таким образом суммарный расход воды на электролиз:
=0,0503 кг/ч
Заключение
Итак, гальваническое производство является одним из крупнейших потребителей воды, а его сточные воды – одними из самых токсичных и вредных.
Основным видом отходов
в гальваническом производстве являются
промывные воды смешанного состава,
содержащие несколько видов тяжелых
металлов и других примесей. Очистка
таких стоков затруднена. При этом
не удается выделить металлы из шлама
сложного состава, а если и удается,
то возникают проблемы с дальнейшим
использованием и переработкой отходов.
Для решения проблемы снижения количества
тяжелых металлов в сточных водах
до ПДК необходимо использовать замкнутую
систему водоснабжения с
И действительно, в сравнении с другими методами очистки промышленных сточных вод преимущества использования электрофлотационных модулей очевидны:
высокая эффективность извлечения дисперсных веществ (гидроксидов и фосфатов тяжелых металлов и кальция, нефтепродуктов, поверхностно-активных и взвешенных веществ);
высокая производительность (1м2 оборудования – 4 м3/ч очищаемой воды);
отсутствие вторичного загрязнения воды благодаря примению нерастворимых электродов ОРТА;
низкие затраты электроэнергии от 0,5 до 1 кВт·ч/м3;
отсутствие заменяемых материалов (электродов, фильтров, сорбентов и пр.);
простота эксплуатации, автоматический режим работы не требуют ежегодного ремонта и остановок;
шлам менее влажный (94–96%), в 3–5 раз легче обезвоживается и может быть использован при изготовлении строительных материалов и / или пигментов для красителей.
В проекте рассмотрен электрофлотатор как основная ступень очистки, приведена его технологическая схема, её описание, рассчитан материальный баланс сточных вод.
Список литературы
Волоцков Ф.П. Очистка и использование сточных вод гальванических производств. М.: Химия, 1983.
Бучило Э. Очистка сточных вод травильных и гальванических отделений. М.: Энергия, 1977.
Костюк В.Н. Очистка сточных вод машиностроительных предприятий. Л.: Химия, 1990.
Алферова Л.А. Замкнутые системы водного хозяйства промышленных предприятий, комплексов и районов. М.: Стройиздат, 1984.
Яковлев С.В. Очистка производственных сточных вод. М.: Стройиздат, 1979.
Когановский А.М. Очистка и использование сточных вод в промышленном водоснабжении. М.: Химия, 1983.
Классен В.И., Мокроусов В.А. Введение в теорию флотации. М.: Металлургиздат, 1959. 580 с.
Глембоцкий В.А., Классен В.И. Флотация. М.: Недра, 1973. 384 с.
Родионов А.И., Клушин В.Н., Торочешников Н.С. Техника защиты окружающей среды. М.: Химия, 1989. 512 с.
Яковлев С.В., Карелин Я.А., Ласков Ю.М., Воронов Ю.В. Водоотводящие системы промышленных предприятий. М.: Стройиздат, 1990. 511 с.
Пушкарев В.В., Южанинов А.Г., Мэн С.К. Очистка маслосодержащих вод. М.: Металлургия, 1980. 200 с.
Проскуряков В.А., Шмидт Л.И. Очистка сточных вод в химической промышленности. Л.: Химия, 1977. 464 с.
Справочник по обогащению руд. Основные процессы. М.: Недра, 1983.
Информация о работе Проект участка очистки сточных вод гальванического производства