Проблема взаимодействия энергетики и экологии

Автор работы: Пользователь скрыл имя, 14 Мая 2015 в 10:08, контрольная работа

Краткое описание

В комплексе существующих экологических проблем энергетика занимает одно из ведущих мест. В связи с интенсивным вовлечением возобновляемых источников энергии в практическое использование особое внимание обращается на экологический аспект их воздействия на окружающую среду. Существует мнение, что выработка электроэнергии за счет возобновляемых источников представляет собой абсолютно экологически «чистый» вариант

Прикрепленные файлы: 1 файл

Документ Microsoft Office Word.docx

— 29.26 Кб (Скачать документ)

Проблема взаимодействия энергетики и экологии

В комплексе существующих экологических проблем энергетика занимает одно из ведущих мест. В связи с интенсивным вовлечением возобновляемых источников энергии в практическое использование особое внимание обращается на экологический аспект их воздействия на окружающую среду. Существует мнение, что выработка электроэнергии за счет возобновляемых источников представляет собой абсолютно экологически «чистый» вариант. Это не совсем верно, так как эти источники энергии обладают принципиально иным спектром воздействия на окружающую среду по сравнению с традиционными энергоустановками на органическом, минеральном и гидравлическом топливе, причем в некоторых случаях воздействия последних представляют даже меньшую опасность. К тому же определенные виды экологического воздействия НВИЭ на окружающую среду не ясны до настоящего времени, особенно во временном аспекте, а потому изучены и разработаны еще в меньшей степени, чем технические вопросы использования этих источников.

Разновидностью возобновляемых источников энергии являются гидроэнергетические ресурсы. Долгое время их также относили к экологически «чистым» источникам энергии. Не принимая во внимание экологические последствия такого использования, естественно, не проводилось достаточных разработок природоохранных и средозащитных мероприятий, что привело гидроэнергетику на рубеже 90-х годов к глубокому кризису. Поэтому возможные экологические последствия применения НВИЭ должны быть исследованы заранее.

Рассмотрим основные факторы экологического воздействия нетрадиционных возобновляющихся источников энергии на различные природные среды и объекты.

Экологические последствия развития солнечной энергетики

Солнечные станции являются еще недостаточно изученными объектами, поэтому отнесение их к экологически чистым электростанциям нельзя назвать полностью обоснованным. В лучшем случае к экологически чистой можно отнести конечную стадию – стадию эксплуатации СЭС, и то относительно.

Солнечные станции являются достаточно землеемкими. Удельная землеемкость СЭС изменяется от 0,001 до 0,006 га/кВт с наиболее вероятными значениями 0,003–0,004 га/кВт. Это меньше, чем для ГЭС, но больше, чем для ТЭС и АЭС. При этом надо учесть, что солнечные станции весьма материалоемки (металл, стекло, бетон и т.д.), к тому же в приведенных значениях землеемкости не учитываются изъятие земли на стадиях добычи и обработки сырья. В случае создания СЭС с солнечными прудами удельная землеемкость повысится и увеличится опасность загрязнения подземных вод рассолами.

Солнечные концентраторы вызывают большие по площади затенения земель, что приводит к сильным изменениям почвенных условий, растительности и т. д. Нежелательное экологическое действие в районе расположения станции вызывает нагрев воздуха при прохождении через него солнечного излучения, сконцентрированного зеркальными отражателями. Это приводит к изменению теплового баланса, влажности, направления ветров; в некоторых случаях возможны перегрев и возгорание систем, использующих концентраторы, со всеми вытекающими отсюда последствиями. Применение низкокипящих жидкостей и неизбежные их утечки в солнечных энергетических системах во время длительной эксплуатации могут привести к значительному загрязнению питьевой воды. Особую опасность представляют жидкости, содержащие хроматы и нитриты, являющиеся высокотоксичными веществами.

Гелиотехника косвенным образом оказывает влияние на окружающую среду. В районах ее развития должны возводиться крупные комплексы по производству бетона, стекла и стали. Во время изготовления кремниевых, кадмиевых и арсенидогелиевых фотоэлектрических элементов в воздухе производственных помещений появляются кремниевая пыль, кадмиевые и арсенидные соединения, опасные для здоровья людей.

Космические СЭС за счет СВЧ-излучения могут оказывать влияние на климат, создавать помехи теле- и радиосвязи, воздействовать на незащищенные живые организмы, попавшие в зону его влияния. В связи с этим необходимо использовать экологически чистый диапазон волн для передачи энергии на Землю.

Неблагоприятные воздействия солнечной энергии на окружающую среду могут проявляться:

− в отчуждении земельных площадей, их возможной деградации;

− в большой материалоемкости;

− в возможности утечки рабочих жидкостей, содержащих хлораты и нитриты;

− в опасности перегрева и возгорания систем, заражения продуктов токсичными веществами при использовании солнечных систем в сельском хозяйстве;

− в изменении теплового баланса, влажности, направления ветра в районе расположения станции;

− в затемнении больших территорий солнечными концентраторами, возможной деградации земель;

− в воздействии на климат космических СЭС;

− в создании помех телевизионной и радиосвязи;

− в передаче энергии на Землю в виде микроволнового излучения, опасного для живых организмов и человека.

Влияние ветроэнергетики на природную среду

Факторы воздействия ВЭС на природную среду, а также последствия этого влияния и основные мероприятия по снижению и устранению отрицательных проявлений приведены в ниже. Рассмотрим некоторые из них более подробно.

Под мощные промышленные ВЭС необходима площадь из расчета от 5 до 15 МВт/км2 в зависимости от розы ветров и местного рельефа района. Для ВЭС мощностью 1000 МВт потребуется площадь от 70 до 200 км2. Выделение таких площадей в промышленных регионах сопряжено с большими трудностями, хотя частично эти земли могут использоваться и под хозяйственные нужды. Например, в Калифорнии в 50 км от г. Сан-Франциско на перевале Алтамонт-Пасс земля, отведенная под парк мощной ВЭС, одновременно служит для сельскохозяйственных целей.

Методы устранения негативного влияния ВЭУ на окружающую среду

Факторы воздействия

Методы устранения

I. Изъятие земельных ресурсов, изменение  свойств почвенного слоя

Размещение ВЭУ на неиспользуемых землях

Оптимизация размещения – минимизация расхода земли

Целенаправленный учет изменений свойств почвенного слоя

Компенсационные расчеты с землепользователями

 

II. Акустическое воздействие(шумовые эффекты)

Изменение числа оборотов ветроколеса (ВК)

Изменение форм лопасти ВК

Удаление ВЭУ от объектов социальной инфраструктуры

Замена материалов лопастей ВК

 

III. Влияние на ландшафт и его  восприятие

Учет особенностей ландшафта при размещении ВЭУ

Рекреационное использование ВЭУ

Изыскание различных форм опорных конструкций, окраски и т.д.

 

IV. Электромагнитное излучение, телевидение  и радиосвязь

Сооружение ретрансляторов

Замена материалов лопастей ВК

Внедрение специальной аппаратуры в конструкцию ВЭУ

Удаление от коммуникаций

 

V. Влияние на орнитофауну на  перелетных трассах и мор- скую фауну при размещении ВЭС на акваториях

Анализ поражаемости птиц на трассах перелета и рыб на путях миграции

Расчет вероятности поражения птиц и рыб

 

VI. Аварийные ситуации, опасность  поломки и отлета поврежденных  частей ВК

Расчет вероятности поломок ветроколеса, траектории и дальности отлета

Оценка надежности безаварийной работы ВЭУ

Зонирование производства вокруг ВЭУ

 

Проблема использования территории упрощается при размещении ВЭС на акваториях. Например, предложения по созданию мощных ВЭС на мелководных акваториях Финского залива и Ладожского озера не связаны с изъятием больших территорий из хозяйственного, пользования. Из отводимой площади акватории для ВЭС непосредственно под сооружения для ВЭУ понадобится лишь около 2 %. В Дании дамба, на которой установлен парк ВЭУ, одновременно является пирсом для рыболовных судов. Использование территории, занятой ветровым парком, под другие цели зависит от шумовых эффектов и степени риска при поломках ВЭУ. У больших ВЭУ лопасть при отрыве может быть отброшена на 400–800 м.

Наиболее важный фактор влияния ВЭС на окружающую среду – это акустическое воздействие. В зарубежной практике выполнено достаточно исследований и натурных изменений уровня и частоты шума для различных ВЭУ с ветроколесами, отличающимися конструкцией, материалами, высотой над землей, и для разных природных условий (скорость и направление ветра, подстилающая поверхность и т. д.). Шумовые эффекты от ВЭУ имеют разную природу и подразделяются на механические (шум от редукторов, подшипников и генераторов) и аэродинамические воздействия. Последние, в свою очередь, могут быть низкочастотными (менее 16-20 Гц) и высокочастотными (от 20 Гц до нескольких кГц). Они вызваны вращением рабочего колеса и определяются следующими явлениями: образованием разряжения за ротором или ветроколесом с устремлением потоков воздуха в некую точку схода турбулентных потоков; пульсациями подъемной силы на профиле лопасти; взаимодействием турбулентного пограничного слоя с задней кромкой лопасти.

Удаление ВЭС от населенных пунктов и мест отдыха решает проблему шумового эффекта для людей. Однако шум может повлиять на фауну, в том числе на морскую фауну в районе экваториальных ВЭС. По зарубежным данным, вероятность поражения птиц ветровыми турбинами оценивается в 10%, если пути миграции проходят через ветровой парк. Размещение ветровых парков повлияет на пути миграции птиц и рыб для экваториальных ВЭС.

Высказываются предположения, что экранирующее действие ВЭС на пути естественных воздушных потоков будет незначительным и его можно не принимать во внимание. Это объясняется тем, что ВЭУ используют небольшой приземный слой перемещающихся воздушных масс (около 100-150 м) и притом не более 50 % их кинетической энергии. Однако мощные ВЭС могут оказать влияние на окружающую среду: например, уменьшить вентиляцию воздуха в районе размещения ветрового парка. Экранирующее действие ветрового парка может оказаться эквивалентным действию возвышенности такой же площади и высотой порядка 100-150 м.

Помехи, вызванные отражением электромагнитных волн лопастями ветровых турбин, могут сказываться на качестве телевизионных и микроволновых радиопередач, а также различных навигационных систем в районе размещения ветрового парка ВЭС на расстоянии нескольких километров. Наиболее радикальный способ уменьшения помех – удаление ветрового парка на соответствующее расстояние от коммуникаций. В ряде случаев помех можно избежать, установив ретрансляторы. Этот вопрос не относится к категории трудноразрешимых, и в каждом случае может быть найдено конкретное решение.

Неблагоприятные факторы ветроэнергетики:

− шумовые воздействия, электро-, радио- и телевизионные помехи;

− отчуждение земельных площадей;

− локальные климатические изменения;

− опасность для мигрирующих птиц и насекомых;

− ландшафтная несовместимость, непривлекательность, визуальное не-

восприятие, дискомфортность;

− изменение традиционных морских перевозок, неблагоприятные воз-

действия на морских животных.

Возможные экологические проявления геотермальной энергетики

Основное воздействие на окружающую среду геотермальные электростанции оказывают в период разработки месторождения, строительства паропроводов и здания станций, но оно обычно ограничено районом месторождения.

Природный пар или газ добываются бурением скважин глубиной от 300 до 2700 м. Под действием собственного давления пар поднимается к поверхности, где собирается в теплоизолированные трубопроводы и подается к турбинам. К примеру, в долине гейзеров (США) производительность каждой скважины обеспечивает в среднем 7 МВт полезной мощности. Для работы станции мощностью 1000 МВт требуется 150 скважин, которые занимают территорию более 19 км2. Потенциальными последствиями геотермальных разработок являются оседание почвы и сейсмические эффекты. Оседание возможно всюду, где нижележащие слои перестают поддерживать верхние слои почвы и выражается в снижении дебитов термальных источников и гейзеров и даже полном их исчезновении. Так, при эксплуатации месторождения Вайрокей (США) с 1954 по 1970 гг. поверхность земли просела почти на 4 м, а площадь зоны, на которой произошло оседание грунта, составила около 70 км2, продолжая ежегодно увеличиваться.

Высокая сейсмическая активность является одним из признаков близости геотермальных месторождений, и этот признак используется при поисках ресурсов. Однако интенсивность землетрясений в зоне термальных явлений, вызванных вулканической деятельностью, обычно значительно меньше интенсивности землетрясений, вызванных крупными смещениями земной коры по разломам. Поэтому нет оснований считать, что разработка геотермальных ресурсов увеличивает сейсмическую активность.

На ГеоТЭС не происходит сжигания топлива, поэтому объем отравляющих газов, выбрасываемых в атмосферу, значительно меньше, чем на ТЭС, и они имеют другой химический состав по сравнению с газообразными отходами станций на органическом топливе. Пар, добываемый из геотермальных скважин, в основном является водяным. Газовые примеси на 80 % состоят из двуокиси углерода и содержат небольшую долю метана, водорода, азота, аммиака и сероводорода. Наиболее вредным является сероводород (0,0225 %). В геотермальных водах содержатся в растворенном виде такие газы, как SO2, N2, NH3, H2S, CH4, H2. Потребность ГеоТЭС в охлаждающей воде (на 1 кВт·ч электроэнергии) в 4-5 раз выше, чем ТЭС, из-за более низкого КПД. Сброс отработанной воды и конденсата для охлаждения в водоемы может вызвать их тепловое загрязнение, а также повышение концентрации солей, в том числе хлористого натрия, аммиака, кремнезема, и таких элементов, как бор, мышьяк, ртуть, рубидий, цезий, калий, фтор, натрий, бром, иод, хотя и в небольших количествах.

Информация о работе Проблема взаимодействия энергетики и экологии