Предмет экологии и история ее развития

Автор работы: Пользователь скрыл имя, 23 Марта 2015 в 14:33, контрольная работа

Краткое описание

Предметом экологии является совокупность или структура связей между организмами и средой.
Стратегической задачей экологии считается развитие теории взаимодействия природы и общества на основе нового взгляда, рассматривающего человеческое общество как неотъемлемую часть биосферы.
Таким образом, экология становится одной из важнейших наук будущего и, «возможно, само существование человека на нашей планете будет зависеть от ее прогресса» (Ф. Дре, 1976).

Содержание

Предмет экологии и история ее развития. 3
Популяции: разнообразие, классификации и специфические
свойства. 8
Свойства живого вещества. 11
Альтернативные источники энергии, перспективы их
использования. 13
Список литературы 16

Прикрепленные файлы: 1 файл

1.doc

— 85.50 Кб (Скачать документ)

Многообразие природных популяций выражается также в многообразии типов их внутренней структуры.

 

Специфические свойства популяции – это свойства, которыми обладает

популяция как группа особей.

- численность – количество особей  в популяции;

- плотность – количество особей  на единицу площади или объема.

- рождаемость – количество особей, родившихся в популяции за единицу времени;

- смертность – по аналогии  с рождаемостью.

Смертность и рождаемость – видоспецифические признаки, но в зависимости от условий окружающей среды могут изменяться в некоторых пределах.

 

 

Свойства живого вещества

К основным уникальным особен­ностям живого вещества, обусловливающим его крайне высокую средообразующую деятельность, можно отнести следующие:

1. Способность быстро занимать (осваивать) все свобод­ное пространство. В. И. Вернадский назвал это всюдностью  жиз­ни. Данное свойство дало основание В. И. Вернадскому сделать вывод, что для определенных геологических периодов количество живого вещества было примерно постоянным (константой). Спо­собность быстрого освоения пространства связана как с интенсив­ным размножением (некоторые простейшие формы организмов могли бы освоить весь земной шар за несколько часов или дней, если бы не было факторов, сдерживающих их потенциальные воз­можности размножения), так и со способностью организмов ин­тенсивно увеличивать поверхность своего тела или образуемых ими сообществ. Например, площадь листьев растений, произрастаю­щих на 1 га, составляет 8-10 га и более. То же относится к корне­вым системам.

2. Движение не только пассивное (под действием силы тяже­сти, гравитационных сил и т. п.), но и активное. Например, против течения воды, силы тяжести, движения воздушных потоков и т. п.

3. Устойчивость при жизни и  быстрое разложение после смерти (включение в круговороты), сохраняя  при этом высокую физико-химическую  активность.

4. Высокая приспособительная способность (адаптация) к различным условиям и в связи с этим освоение не только всех сред жизни (водной, наземно-воздушной, почвенной, организменной), но и крайне трудных по физико-химическим параметрам условий. Например, некоторые организмы выносят температуры, близ­кие к значениям абсолютного нуля - 273°С, микроорганизмы встре­чаются в термальных источниках с температурами до 140°С, в водах атомных реакторов, в бескислородной среде, в ледовых пан­цирях и т. п.

5. Феноменально высокая скорость протекания реакций. Она на несколько порядков (в сотни, тысячи раз) значительнее, чем в неживом веществе. Об этом свойстве можно судить по скорости переработки вещества организмами в процессе жизне­деятельности. Например, гусеницы некоторых насекомых потреб­ляют за день количество пищи, которое в 100-200 раз больше веса их тела. Особенно активны организмы-грунтоеды. Дождевые чер­ви (масса их тел примерно в 10 раз больше биомассы всего чело­вечества) за 150-200 лет пропускают через свои организмы весь однометровый слой почвы. Такие же явления имеют место в дон­ных отложениях океана. Слой донных отложений здесь может быть представлен продуктами жизнедеятельности кольчатых чер­вей (полихет) и достигать нескольких метров. Колоссальную роль по преобразованию вещества выполняют организмы, для кото­рых характерен фильтрационный тип питания. Они освобождают водные массы от взвесей, склеивая их в небольшие агрегаты и осаждая на дно.

Впечатляют примеры чисто механической деятельности неко­торых организмов, например роющих животных (сурков, сусликов и др.), которые в результате переработки больших масс грунта со­здают своеобразный ландшафт. По представлениям В. И. Вернад­ского, практически все осадочные породы, а это слой до 3 км, на 95-99% переработаны живыми организмами. Даже такие колос­сальные запасы воды, которые имеются в биосфере, разлагаются в процессе фотосинтеза за 5-6 млн. лет, углекислота же проходит через живые организмы в процессе фотосинтеза каждые 6-7 лет.

6. Высокая скорость обновления  живого вещества. Под­считано, что в среднем для биосферы она составляет 8 лет, при этом для суши -14 лет, а для океана, где преобладают организмы с коротким периодом жизни (например, планктон), - 33 дня. В ре­зультате высокой скорости обновления за всю историю существо­вания жизни общая масса живого вещества, прошедшего через био­сферу, примерно в 12 раз превышает массу Земли. Только неболь­шая часть его (доли процента) законсервирована в виде органичес­ких остатков (по выражению В. И. Вернадского, «ушла в геоло­гию»), остальная же включилась в процессы круговорота.

Все перечисленные и другие свойства живого вещества обус­ловливаются концентрацией в нем больших запасов энер­гии. Согласно В. И. Вернадскому, по энергетической насыщеннос­ти с живым веществом может соперничать только лава, образую­щаяся при извержении вулканов.

 

 

 

 

Альтернативные источники энергии, перспективы их использования

Исчерпание полезных ископаемых и высокий уровень воздействия на окружающую среду традиционной энергетики вызвал во всем мире поиск и использование нетрадиционных альтернативных источников энергии.

К альтернативным источникам энергии относятся возобновляемые источники – энергия солнца, ветра, геотермальная, океаническая, энергия биомассы, термоядерная энергия и другие источники.

Энергия солнца. Это практически неисчерпаемый источник энергии. Использование лишь 1% солнечной энергии могло бы обеспечить все сегодняшние потребности мировой энергетики. Главное – ее использовать так, чтобы ее стоимость была минимальной. По мере совершенствования технологий и удорожания традиционных энергоресурсов, эта энергия будет находить все большее применение.

Солнечную энергию можно использовать в двух направлениях:

-прямое использование для отопления, горячего водоснабжения;

-преобразование ее в электрическую.

Использование солнечного тепла наиболее простой и дешевый способ.

Наиболее распространенный способ улавливания солнечной энергии с помощью различного типа коллекторов. Целенаправленное использование энергии солнца пока невелико, но все время интенсивно увеличивается.

Преобразование солнечной энергии в электрическую осуществляется с помощью фотоэлектрических преобразователей (солнечных батарей) или путем нагревания воды до кипения с получением пара, приводящего в действие турбогенераторы.

Основные трудности применения фото преобразователей связаны с высокой металлоемкостью, их дороговизной, а также необходимостью отведения для их размещения больших территорий. В настоящее время проводят исследования по замене металлических фотопреобразователей на эластичные синтетические с использованием крыш и стен домов для размещения батарей.

Солнечная энергия используется в автомобильном, морском, авиационном транспорте, на космических станциях и спутниках.

Использование энергии солнца имеет большое будущее, но пока оно должно развиваться, совершенствоваться и снижать себестоимость энергии. Предполагается, что к середине XXІ века доля солнечной энергии в общем объеме вырабатываемой энергии составит от 10 до 20%.

Энергия ветра. Использование ветровой энергии известно с древности, а в последнее время интерес к ней значительно возрос. Так, в США используется несколько десятков тысяч ветровых агрегатов. Существенными установленными мощностями располагают Великобритания, Германия, Дания, Нидерланды, Швеция и другие страны.

К настоящему времени испытаны ветродвигатели различной мощности. Более экономичными являются комплексы из небольших ветровых установок, объединенных в одну систему.

Основные факторы воздействия на окружающую среду – высокая металлоемкость ветроустановок, отчуждение больших земельных территорий, вибрационное и шумовое воздействие, гибель перелетных птиц под ударами лопастей. Особенно высокое шумовое воздействие возникает при эксплуатации мощных установок.

С учетом экологических факторов солнечные и ветровые электростанции уже сегодня более экономичны, чем тепловые и атомные.

Геотермальная энергия основана на использовании глубинного тепла Земли. Она может использоваться в виде тепловой энергии (столица Исландии Рейкьявик получает тепло исключительно от горячих подземных источников) и для получения электроэнергии.

Геотермальные станции устроены относительно просто, здесь не требуется топливо, золоуловители. Пар, откачиваемый из скважин, поступает в турбины и приводит в действие электрогенераторы.

Основные экологические проблемы геотермальных станций связаны с отработанными минерализованными водами. При отсутствии обратной закачки отработанных вод возникает опасность засоления водных объектов, почв; также происходит тепловое загрязнение окружающей среды, просадка земной поверхности над разрабатываемым геотермальным пластом.

Энергия морей и океанов. Энергетические ресурсы океана представляют большую ценность, как возобновляемые и практически неисчерпаемые ресурсы. К ним относится энергия приливов и отливов, волн, течений, разницы температур на различных глубинах. В настоящее время эта энергия используется незначительно из-за высокой стоимости. Однако, инженерные расчеты и проекты показывают, что это энергия будущего и возможно использование ее гораздо шире.

Энергия биомассы. Биомасса – древесина, отходы лесоперерабатывающей и бумажной промышленности, отходы сельскохозяйственного производства и пищевой промышленности, бытовые отходы, навоз, осадки очистки канализационных стоков и др.

Около трети населения Земли до настоящего времени используют древесину в качестве топлива.

Более рациональной является переработка биомассы в биогаз, этиловый спирт. Путем анаэробного сбраживания (без доступа кислорода) органических отходов: получают биогаз и осадок, используемый как удобрение. Ведущее место по производству биогаза занимает Китай.

В Европе получило развитие выращивание масленичной культуры – рапса, который затем полностью перерабатывается в дизтопливо по очень простой технологии.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ЛИТЕРАТУРЫ:

  1. Экология: Учебное пособие / Под ред. проф. В.В. Денисова. Серия «Учебный курс». – Ростов н /Д: Издательский центр «МарТ», 2002. – 640 с.
  2. Чернова Н.М., Былова A.M. Общая экология: учеб. для студентов педагогических вузов. - М : Дрофа, 2004. - 416 с.
  3. Пахомова Н.В., Рихтер К.К. Экономика природопользования и охра ны окружающей среды: учеб. пособие. - СПб.: Изд-во С.-Петерб. ун-та, 2003.-220 с.
  4. Коробкин В.И., Передельский Л.В. Экология. – Ростов н /Д: изд-во «Феникс», 2001 – 576 с.
  5. Общая экология: Учебник для вузов / Автор – сост. А.С. Степановских. – М.: ЮНИТИ-ДАНА, 2000

 

 

 


Информация о работе Предмет экологии и история ее развития