Автор работы: Пользователь скрыл имя, 15 Декабря 2012 в 12:58, контрольная работа
Впервые понятие биосфера, как «область жизни», было введено в науку Ж.Б. Ламарном в начале 19 века, а в геологию Э. Зюссом в 1875 г. Он понимал под этим термином совокупность всех организмов. Это определение близко к современному понятию биота.
Вернадский пошел значительно дальше. Его «биосфера не есть только так называемая область жизни». Это единство живого и косного вещества планеты. Но не только. Это еще и связь с космосом, с космическими излучениями, принимаемыми нашей планетой, строящими ее биосферу.
Введение
Глава 1. Понятие о биосфере 3
1.1. Границы биосферы 4
1.2. Состав и свойства биосферы 6
Глава 2. Живое вещество биосферы 9
2.1. Свойства живого вещества 9
2.2. Функции живого вещества 11
Глава 3. Геохимические циклы, круговороты кислорода, углекислого газа, азота 13
3.1. Круговорот углекислого газа 14
3.2. Круговорот азота 17
3.3 Круговорот кислорода и водорода 20
Глава 4. Глобальные проблемы компонентов биосферы
Заключение
Литература
2.2. Функции живого вещества
Какие же функции живого вещества в биосфере?
В.И. Вернадский называет такие: а) газовая; б) кислородная; в) описательная; г) кальционная; д) восстановительная; е) концентрационная; ж) разрушения органических веществ; з) восстановительного распада; и) метаболизма и дыхания организмов.
А.В. Лапо перегруппировал названные Вернадским функции (табл. 1).
Таблица 1.
Основные функции живого вещества в биосфере
Функции |
Краткая характеристика процессов |
Энергетическая |
Поглощение солнечной энергии в процессе фотосинтеза, а химической энергии путем распада энергонасыщенных веществ; передача энергии пищевыми цепями разнородного живого вещества |
Концентрационная |
Выборочное накопление в ходе жизнедеятельности отдельных видов вещества: а) использованной для создания тела организма; б) выделенной из него в процессе метаболизма |
Деструкционная |
Минерализация небиогенного органического вещества (1); разложение неживого неорганического вещества (2); всасывание созданных веществ в биохимический круговорот (3) |
Средообразующая |
Превращение физико-химических параметров среды (главным образом за счет небиогенного вещества) |
Транспортная |
Перенос вещества против силы тяжести и в горизонтальном направлении |
Первой названа энергетическая
функция. «Только жизнь с его
морфологическим осложнением
Глава 3. Геохимические циклы, круговороты кислорода, углекислого газа, азота
В отличие от энергии, поступающей
от Солнца, дополнительному количеству
дефицитного вещества взять его
неоткуда. Единственный возможный вариант
– использовать вещество многократно,
иначе говоря, включить его в круговорот.
Конечно, ни одна отдельно взятая группа
организмов не может сама «организовать»
круговорот нужного элемента. Обязательно
требуется несколько
К примеру есть организмы, не использующие солнечную энергию для построения сложных органических веществ из воды и углекислого газа – фотоавтотрофы. После их отмирания образуется запас органического вещества, представляющий немалую энергетическую ценность. Таким образом создаются условия для появления существ, которые могли бы жить за счет данного запаса (хемогетеротрофов). То, что в результате жизнедеятельности последней группы организмов получаются простые минеральные вещества (в первую очередь углекислый газ), использующиеся фотоавтотрофами в качестве строительных блоков, скорее счастливая случайность. Однако именно эта случайность обеспечила замыкание цикла миграции химических элементов.
Современные круговороты тех или иных элементов, протекающие с активным участием организмов, родилась не на пустом месте. Круговорот вещества существовал на Земле и до возникновения жизни, и определялся он исключительно физико-химическими процессами. Живые же вещества вне зависимости от того, как и когда они появились, должны были встраиваться в уже существующий круговорот. При этом движение химических элементов становилось более интенсивным и сложным.
Правда, иногда организмы, призванные разлагать органическое вещество до простых компонентов, не могли с этим справиться по каким-либо причинам (например, было слишком холодно для обмена вещества). В таком случае часть вещества надолго выпадала из круговорота. Уголь, нефть и газ – продукты подобных сбоев.
3.1. Круговорот углекислого газа
Углекислый газ входит в состав всех органических веществ, а поэтому его круговорот наиболее распространен в природе (рис. ). Он осуществляется при помощи трех групп организмов: продуцентов, консументов, редуцентов. Органическое вещество синтезируется зелеными растениями в процессе фотосинтеза из углекислого газа атмосферы, содержание которого равно лишь 0,03-0,04%.
Если бы углекислый газ пополнялся за счет поступления с Земли, то его запасы исчерпались бы за 4-35 лет.
В ближайшие 50-60 лет благодаря
увеличению сгорания горючих веществ
содержание углекислого газа в атмосфере
удвоится. Такие быстрые изменения
содержания углекислого газа в атмосфере,
вследствие которого происходит так
называемый парниковый эффект (нагревание
атмосферы инфракрасными
Следует напомнить, что проявление фотосинтеза, которое является главным компонентом движения вещества и энергии в биосфере, стало известно только во второй половине 18 века. В 1772-1782 гг. Д.Пристли, Я. Ингенхауз и Ж. Сеисбье, дополняя друг друга, описали процесс воздушного углеродного поглощения, или фотосинтеза. Через столетие К.А.Тимирязев (1843-1920) раскрыл энергетическую закономерность фотосинтеза как процесса использования света для образования органического вещества в растениях. Механизм фотосинтеза был раскрыт американским биохимиком Кальвином, за что ему была присвоена Нобелевская премия. Сегодня под фотосинтезом понимают превращение зелеными растениями и фотосинтезирующими организмами лучистой энергии Солнца. Процесс фотосинтеза происходит при участии поглощающих свет пигментов (кислород и др.).
Попадая в клетку зеленого листа углекислый газ присоединяется к акцептору, с которым продолжает дальнейшие движения и превращения. Благодаря ферменту альдолязы образуется простой сахар – глюкоза, а из него – сахароза и крахмал. Часть синтезированного вещества в этом процессе переходит снова в акцептор – так образуется саморегулированный цикличный процесс. Далее с участием других ферментов сахара превращаются в белки, жиры и другие органические вещества, необходимые для жизни растений.
Основа реакции фотосинтеза имеет такой вид: 6СО2+6Н2О+ С6Н12О6+6О2+, СО2+Н2О+ СН2О+О2.
За год растения суши и океана усваивают почти 5×1010 т углерода, разлагают 1,3×1011 т воды, выделяют 1,2×1011 т молекулярного кислорода и запасают 4×1017 ккал энергии продуктов фотосинтеза, что в 100 раз превышает производство энергии всеми электростанциями мира.
Годовой круговорот массы СО2 на суше определяется как массой складывающих его звеньев биосферы, так и количеством, которое захватывает каждое звено (т/год):
Суммарный захват фотосинтезом 60×109
Возвращение от дыхания 48×109
Поступления в гумосферу и консервация в многогодовых
фитоценозах 10×109
Захоронение в осадочной толще литосферы, включая реакцию СО2 1×109
Поступление от сгорания топлива 9×109
В гидросфере круговорот СО2 значительно сложнее, чем на суше. Решительную роль тут играет Мировой океан, который аккумулирует вынесенный реками с суши углерод в форме карбонатных и органических соединений. Возвращение углерода с океана или суши происходит с большим дефицитом, главным образом, воздушными потоками в виде СО2. Наличие углекислого газа в гидросфере зависит от поступления кислорода в верхние слои как из атмосферы, так и из нижних слоев воды. В общем выражении годовой круговорот массы углерода в Мировом океане почти вдвое меньше, чем на суше:
Суммарный захват в процессе фотосинтеза 30×109
Возврат в водную среду от дыхания и распада
органического вещества 26×109
Выпадение в донный осадок 1,5×109
Поступление из атмосферы от сгорания топлива 1×109
То же с речным стоком 0,6×109
Переход в растворе органического соединения 10,9×109
Много углерода изымается с биологического круговорота вещества и попадает в океан в виде углекислых солей. Эти соли, особенно САСО3, тратятся на построение панцирей животных, очень много их и в морской воде. Если в атмосфере возрастает содержание СО2, часть его растворяется в воде, вступает в реакцию с карбонатом кальция, образуя растворенный в воде бикарбонат кальция. И, наоборот, при снижении содержания углекислого газа в атмосфере бикарбонаты, которые всегда содержаться в морской воде, превращаются в карбонаты кальция, которые выпадают с раствора, используются организмами для построения скелетов или панцирей, оседают на морское дно. Реакция имеет такой вид: Са(НСО3)2=СаСО3+Н2О+СО2.
Суммарное количество углекислого газа на планете составляет не меньше 2,3×1012 т, тогда как содержание его в Мировом океане оценивает в 1,3×1012 т. В литосфере в связанном состоянии находится 2×1017 т углекислого газа. В живом веществе биосферы содержится около 1,5×1017 т (почти столько, сколько во всей атмосфере). Углекислый газ атмосферы и гидросферы обменивается и обрабатывается живыми организмами за 300 лет (рис.)
3.2. Круговорот азота
Азот, который является олицетворением белковой жизни в биосфере в основном сосредоточенный в атмосфере, где его часть составляет около 78%. То есть на 1 га поверхности Земли приходится толща воздуха с приблизительно 80 тыс. т азота. Однако в таком виде он недоступен растениям. В круговороте соединений азота очень большое значение отводится микроорганизмам и азотофиксаторам. Только благодаря им элементарный азот с воздуха поступает в почву.
Наибольшую роль в этих процессах играют пузырчатые бактерии, которые тесно сотрудничают с бобовыми растениями. При высоком урожае этих растений можно обогатить почву около 400 кг азота на 1 га. Если даже урожай этих растений будет вывезен с поля, значительная часть азота останется с корнями в почве.
Количество азота, свзанного биологическим круговоротом, является неодинаковым в разных экосистемах. Например, на пропаханной земле – 7-28 кг/га за год, на сенокосах с участием злаковых трав и бобовых – 73-865, а в лесах – 58-594 кг/га за год. Подобным образом некоторые лишайники фиксируют азот при помощи симбиотических сине-зеленых водорослей.
Известно, что Ю. Либих (1843) сформулировал утверждение, согласно которому растения могут полностью обеспечить свои потребности азотом, который поступает в землю вместе с атмосфреными осадками (27 кг/га). Однако уже через несколько лет В.И. Лавес и И.Г. Гильберт, изучив баланс азота в плодоношении, доказали, что дополнительный внос азота в почву является необходимым, что признал и сам Ю. Либих.
Возникновение в атмосфере окисей азота связано с газовыми электрическими разрядами. Окиси азота образуют с водой азотную и азотистую кислоту: N2+O2®2NO, 2NO+O2®2NO2, 2NO2+H2O®HNO2+HNO3.
Эти кислоты вместе с атмосферными осадками попадают в почву. Количество азота, которое она получает, является очень разным и зависит, прежде всего, от климатических условий, особенно от количества и частоты осадков, времен года, температуры и др. В умеренном климате это количество составляет несколько килограммов за год, а в тропическом, где наблюдается частые бури, его значительно больше, но в среднем не более 10 кг.
В атмосферу азот в определенных
количествах поступает с почв.
Это происходит с участием микроорганизмов
во время минерализации
К этой категории азота обменного фонда входят: а) азот годовой продукции биомассы; б) азот биологической фиксации бактериями и другими организмами; в) вулканический азот; г) атмосферный (фиксированный в момент грозового разряда); д) техногенный.
В большой круговорот в се время поступает часть азота в виде разных соединений, которые реками выносятся в моря. Содержание соединений азота наибольшей в районах, где в океан впадают большие реки, наименьший – в центральных частях океанов. Азотосодержащие соединения используются водорослями для синтеза органических веществ и поступает в круговорот океана, часть постепенно оседает на дно. То есть вынос азота на суше не увеличивает его концентрации в морской воде.
Граница азота, связанного в биомассе суши, составляет 14020 млн. т, а в зольных элементах – 34062 млн. т азота и 2762 млн. т зольных элементов. В биомассе Мирового океана этих элементов в 1000 раз меньше. Однако, благодаря многоразовому воспроизводству организмов планктона через них на протяжении года проходит азота и зольных элементов больше, чем на суше: азота – 2762 млн. т, зольных элементов – 12274 млн. т.
Если рассматривать круговорот азота в масштабах биосферы, то благодаря саморегулирующим механизмам и обратной связи он считается достаточно идеальным (рис. ). Часть азота, который производится в густонаселенных районах, в пресной воде и мелководных морях, выносится в глубоководные океанические отложения и остается там, исключаясь на миллионы лет с круговорота. Эти потери компенсируются поступлением азота в воздух с вулканическими газами.
3.3 Круговорот кислорода и водорода
Кислород и водород входят в состав всех органических соединений. Они поглощаются продуцентами в составе воды и углекислого газа в процессе фотосинтеза, всеми другими организмами, с органическим веществом, созданным продуцентами, во время дыхания (из атмосферы или водного раствора) и потребления питьевой воды. как конечные продукты биологического круговорота, водород и часть кислорода возвращается в неживую среду так же в виде воды, а кислород, кроме того, выделяется в молекулярной форме в атмосферу растениями-продуцентами как один из конечных продуктов фотосинтеза.