Планетарная роль микроорганизмов. Влияние температуры на бактерии и микроорганизмы

Автор работы: Пользователь скрыл имя, 06 Ноября 2014 в 21:34, контрольная работа

Краткое описание

Микроорганизмы распространены повсюду. Они заселяют почву, воду, воздух, растения, организмы животных и людей - экологические среды обитания микробов.
Выделяют свободноживущие и паразитические микроорганизмы. Всюду, где есть хоть какие- то источники энергии, углерода, азота, кислорода и водорода (кирпичиков всего живого), обязательно встречаются микроорганизмы, различающиеся по своим физиологическим потребностям и занимающих свои экологические ниши.

Содержание

Планетарная роль микроорганизмов

Введение

Микрофлора почвы

Микрофлора воды

Микрофлора воздуха

Микрофлора тела человека

Роль микроорганизмов в круговороте веществ в природе

Заключение

Влияние температуры на бактерии и микроорганизмы

Введение

Термофильные виды

Психрофильные виды

Мезофильные виды

Механизмы выживания бактерий при низких температурах

Механизмы выживания бактерий при высоких температурах

Заключение

Список используемой литературы

Прикрепленные файлы: 1 файл

микробиология.odt.docx

— 71.99 Кб (Скачать документ)

В верхние дыхательные пути попадают пылевые частицы, нагруженные микроорганизмами, большая часть которых задерживается в носо- и ротоглотке. Здесь растут бактероиды, коринеформные бактерии, гемофильные палочки, пептококки, лактобактерии, стафилококки, стрептококки, непатогенные нейссерии и др. Трахея и бронхи обычно стерильны.

Микрофлора пищеварительного тракта является наиболее представительной по своему качественному и количественному составу. При этом микроорганизмы свободно обитают в полости пищеварительного тракта, а также колонизируют слизистые оболочки.

В полости рта обитают актиномицеты, бактероиды, бифидобактерии, эубактерии, фузобактерии, лактобактерии, гемофильные палочки, лептотрихии, нейссерии, спирохеты, стрептококки, стафилококки, вейлонеллы и др. Обнаруживаются также грибы рода Candida и простейшие. Ассоцианты нормальной микрофлоры и продукты их жизнедеятельности образуют зубной налет.

Микрофлора желудка представлена лактобациллами и дрожжами, единичными грамотрицательными бактериями. Она несколько беднее, чем, например, кишечника, так как желудочный сок имеет низкое значение рН, неблагоприятное для жизни многих микроорганизмов. При гастритах, язвенной болезни желудка обнаруживаются изогнутые формы бактерий — Helicobacter pylori, которые являются этиологическими факторами патологического процесса.

В тонкой кишке микроорганизмов больше, чем в желудке; здесь обнаруживаются бифидобактерии, клостридии, эубактерии. Наибольшее количество микроорганизмов накапливается в толстой кишке. В 1 г фекалий содержится до 250 млрд. микробных клеток. Около 95 % всех видов микроорганизмов составляют анаэробы. Основными представителями микрофлоры толстой кишки являются: грамположительные анаэробные палочки (бифидобактерии, лактобациллы, эубактерии); грамположительные спорообразующие анаэробные палочки (клостридии, перфрингенс и др.); энтерококки; грамотрицательные анаэробные палочки (бактероиды); грамотрица- тельные факультативно-анаэробные палочки (кишечные палочки и сходные с ними бактерии сем. Enterobacteriaceae — цитробактер, энтеробактер, клебсиеллы, протей и др.). В меньших количествах обнаруживаются фузобактерии, пропионибактерии, вейлонеллы, пептококки, стафилококки, синегнойная палочка, дрожжеподобные грибы, а также простейшие, вирусы, включая фаги. На эпителии успешно растут спирохеты, нитевидные бактерии. Бифидобактерии и бактероиды составляют 80—90 % от общего количества микрофлоры кишечника.

Важную роль в жизнедеятельности человека играет микрофлора толстой кишки — своеобразный экстракорпоральный орган. Она является антагонистом гнилостной микрофлоры, так как продуцирует молочную, уксусную кислоты, антибиотики и др. Известна ее роль в водно-солевом обмене, регуляции газового состава кишечника, обмене белков, углеводов, жирных кислот, холестерина и нуклеиновых кислот, а также продукции биологически активных соединений — антибиотиков, витаминов, токсинов и др. Морфокинетическая роль микрофлоры заключается в ее участии в развитии органов и систем организма; она принимает участие также в физиологическом воспалении слизистой оболочки и смене эпителия, переваривании и детоксикации экзогенных субстратов и метаболитов, что сравнимо с функцией печени. Нормальная микрофлора выполняет, кроме того, антимутагенную роль, разрушая канцерогенные вещества в кишечнике. В то же время некоторые бактерии могут продуцировать сильные мутагены.

Пристеночная микрофлора кишечника колонизирует слизистую оболочку в виде микроколоний, образуя своеобразную биологическую пленку, состоящую из микробных тел и экзополисахаридного матрикса. Экзополисахариды микроорганизмов, называемые гликокаликсом, защищают микробные клетки от разнообразных физико-химических и биологических воздействий. Слизистая оболочка кишечника также находится под защитой биологической пленки.

Значительное влияние оказывает микрофлора кишечника на формирование и поддержание иммунитета. В кишечнике содержится около 1,5 кг микроорганизмов, антигены которых стимулируют иммунную систему. Естественным неспецифическим стимулятором иммуногенеза является мурамилдипептид, образующийся из микрофлоры под влиянием лизоцима и других литических ферментов, находящихся в кишечнике.

Важнейшей функцией нормальной микрофлоры кишечника является ее участие в колонизационной резистентности, под которой понимают совокупность защитных факторов организма и конкурентных, антагонистических и других особенностей анаэробов кишечника, придающих стабильность микрофлоре и предотвращающих колонизацию слизистых оболочек посторонними микроорганизмами. С целью предотвращения инфекционных осложнений, при пониженной сопротивляемости организма и повышенном риске аутоинфекции, в случаях обширных травм, ожогов, иммунодепрессивной терапии, трансплантации органов и тканей проводят мероприятия, направленные на сохранение и восстановление колонизационной резистентности. Исходя из этого, осуществляют селективную деконтаминацию — избирательное удаление из пищеварительного тракта аэробных бактерий и грибов для повышения сопротивляемости организма к инфекционным агентам. Селективную деконтаминацию проводят путем назначения для приема внутрь малоадсорбируемых химиопрепаратов, подавляющих аэробную часть и не влияющих на анаэробы, например комплексное назначение ванкомицина, гентамицина и нистатина.

Нормальная микрофлора влагалища включает бактероиды, лактобактерии, пептострептококки и клостридии.

Представители нормальной микрофлоры при снижении сопротивляемости организма могут вызвать гнойно-воспалительные процессы, т.е. нормальная микрофлора может стать источником аутоинфекции, или эндогенной инфекции. Она также является источником генов, например генов лекарственной устойчивости к антибиотикам. Кроме того, как уже было сказано выше, кишечная микрофлора, попадая в окружающую среду, может загрязнять почву, воду, воздух, продукты питания и т.д. Поэтому ее обнаружение свидетельствует о загрязнении исследуемого объекта выделениями человека.

Состояние эубиоза — динамического равновесия микрофлоры и организма человека — может нарушаться под влиянием факторов окружающей среды, стрессовых воздействий, широкого и бесконтрольного применения антимикробных препаратов, лучевой и химиотерапии. В результате нарушается колонизационная резистентность. Аномально размножившиеся микроорганизмы продуцируют токсичные продукты метаболизма — индол, скатол, аммиак, сероводород. Такое состояние, развивающееся в результате утраты нормальных функций микрофлоры, называется дисбактериозом или дисбиозом. При дисбактериозе происходят количественные и качественные изменения бактерий, входящих в состав микрофлоры. При дисбиозе изменения происходят и среди других групп микроорганизмов — вирусов, грибов и др.

Дисбиоз и дисбактериоз считаются эндогенной инфекцией, возникающей чаще всего в результате нарушения антимикробными препаратами нормальной микрофлоры.

Для восстановления нормальной микрофлоры назначают препараты пробиотики (эубиотики), полученные из лиофильно высушенных живых бактерий, представителей нормальной микрофлоры кишечника — бифидобактерий, кишечной палочки, лактобактерий и др.

 

Роль микроорганизмов в круговороте веществ в природе

С помощью микроорганизмов органические соединения растительного и животного происхождения минерализуются до углерода, азота, серы, фосфора, железа и др.

Круговорот углерода. В круговороте углерода активное участие принимают растения, водоросли и цианобактерии, фиксирующие СО2 в процессе фотосинтеза, а также микроорганизмы, разлагающие органические вещества отмерших растений и животных с выделением СО2. При аэробном разложении органических веществ образуются СО2 и вода, а при анаэробном брожении — кислоты, спирты, СО2. Так, при спиртовом брожении микроорганизмы (дрожжи и др.) расщепляют углеводы до этилового спирта и диоксида углерода. Молочнокислое брожение, вызываемое молочнокислыми бактериями, характеризуется выделением молочной и уксусной кислот и диоксида углерода. Процессы пропионовокислого (вызываемого пропионибактериями), маслянокислого, ацетонобутилового (вызываемых клостридиями) и других видов брожения сопровождаются образованием различных кислот и диоксида углерода.

Круговорот азота. Атмосферный азот связывают только клубеньковые бактерии и свободноживущие микроорганизмы почвы. Органические соединения растительных, животных и микробных остатков подвергаются в почве минерализации микроорганизмами, превращаясь в соединения аммония. Процесс образования аммиака при разрушении белка микроорганизмами получил название аммонификации, или минерализации азота. Активно разрушают белок такие бактерии, как псевдомонады, протей, бациллы, клостридии. При аэробном распаде белков образуются диоксид углерода, аммиак, сульфаты и вода; при анаэробном — аммиак, амины, диоксид углерода, органические кислоты, индол, скатол, сероводород. Разложение мочевины, выделяющейся с мочой, осуществляют уробактерии, расщепляющие ее до аммиака, диоксида углерода и воды. Образующиеся аммонийные соли в результате ферментации бактериями органических соединений могут использоваться высшими зелеными растениями. Но наиболее усвояемыми для растений являются нитраты — азотнокислые соли. Эти соли появляются при распаде органических веществ в процессе окисления аммиака до азотистой, а затем азотной кислоты. Данный процесс называется нитрификацией, а микроорганизмы, его вызывающие, — нитрифицирующими. Нитрифицирующие бактерии выделил и описал русский ученый С. Н. Виноградский (1890—1892). Нитрификация проходит в две фазы: первую фазу осуществляют бактерии рода нитрозомонас и др., при этом аммиак окисляется до азотистой кислоты, образуются нитриты; во второй фазе участвуют бактерии рода нитробактер и др., при этом азотистая кислота окисляется до азотной и превращается в нитраты. Две фазы нитрификации являются примером метабиоза — взаимоотношений микроорганизмов, при которых один микроорганизм размножается, используя продукты жизнедеятельности другого микроорганизма.

Нитраты повышают плодородие почвы, однако существует и обратный процесс: нитраты могут восстанавливаться в результате процесса денитрификации до выделения свободного азота, что обедняет его запас в виде солей в почве, приводя к снижению ее плодородия.

 

 Заключение

1)Бактерии — великие  преобразователи биомассы. Мёртвые  организмы как растительного, так  и животного происхождения подвергаются  усердной обработке бактериями, которые превращают мёртвые клетки  организмов в почву и удобрения, таким образом поддерживая «круговорот  биомассы» в природе. Например, листва, которая опадает с деревьев  осенью, подвергается воздействию  бактерий и к следующей весне  превращается в плодородный перегной. На этой плодородной почве  и растёт то самое дерево, которое  осенью сбросило листву. 

2)Бактерии — поглотители  азота. Только бактериям под силу  ассимилировать азот, который затем  поступает в качестве удобрения  в почву. Специальные ферменты, содержащиеся  в бактериях, помогают им «усваивать»  атмосферный азот и смешивать его с другими минералами. Так происходит жизненно важный процесс для всех растений на Земле — фиксация азота. 

3)Бактерии — поставщики  кислорода и углекислого газа. Количество кислорода в атмосфере  планеты — важнейший показатель, необходимый для существования  всех живых существ. Бактерии  постоянно пополняют атмосферу  Земли кислородом, поэтому без  бактерий мы с вами, скорее  всего, давно бы задохнулись. 

4)Бактерии — создатели  полезных ископаемых. Многие полезные  ископаемые создаются веками  и тысячелетиями из биомассы  при участии воздуха, воды, почв  и бактерий. Поэтому роль бактерий  как творцов полезных ископаемых  также очень велика. 

5)Бактерии — шеф-повара  молочных продуктов. Молочнокислые  бактерии необходимы для свёртывания  молока, из которого люди делают  кефир, сыр и йогурт. Без молочнокислых  бактерий мы бы никогда не  смогли получить все эти замечательные  продукты. 

6)Бактерии — помощники  фермера. Специальные бактерии помогают  в сельском хозяйстве бороться  с насекомыми-вредителями и сорняками. Для повышения урожайности человек  использует также специальные бактериальные удобрения.

7)Бактерии — не только  друзья и помощники. Многие бактерии  переносят опасные заболевания, такие как холера, туберкулёз  или сифилис. В мире существует  даже специальное бактериологическое  оружие массового поражения, способное  вызвать эпидемию. 

 

2.Влияние температуры на бактерии и микроорганизмы

 

Ввдение

Факторы внешней среды постоянно влияют на жизнедеятельность микроорганизмов. При благоприятных условиях наблюдаются быстрый рост и размножение микробов. В условиях, неблагоприятных для жизнедеятельности, развитие замедляется, и далее может наступить их гибель. Факторы внешней среды, оказывающие влияние на микроорганизмы, подразделяют на физические, химические и биологические.

Действие температуры на рост микроорганизмов может быть обусловлено ее непосредственным влиянием на скорость химических реакций и на состояние макромолекулярных компонентов клетки (вязкость мембран, конформацию белков и т.д.). В отличие от теплокровных животных микроорганизмы не могут регулировать свою температуру. Их функциональная активность определяется температурой окружающей среды.

 
По отношению к температурным условиям микроорганизмы разделяют на термофильные, психрофильные и мезофильные.

 

Термофильные виды. Зона оптимального роста равна 50-60°С, верхняя зона задержки роста - 75°С. Термофилы обитают в горячих источниках, участвуют в процессах самонагревания навоза, зерна, сена. Микель (Miquel) первый нашел и выделил из воды Сены неподвижного бацилла, способного жить и размножаться при температуре в 70° С. Ван Тигем (Van Tieghem) нашел стрептококка и бацилла, живущих при 74° С. Глобиг (Globig) нашел 28 видов бактерий, для развития которых 65° С наиболее благоприятная температура. Все эти виды, за исключением одного, теряли способность роста, едва температура доходила до 15° С. Исследования Глобига показали далее, что термофильные бактерии весьма распространены в природе. Л. Рабинович (L. Rabinowitsch), в свою очередь, выделила из экскрементов различных животных, из земли и снега целый ряд термофильных бактерий и тем показала, насколько широко распространены в природе указанные организмы. По исследованиям других ученых (Macfadyen, Allan и Blaxall) оказалось, что термофильные бактерии встречаются не только на поверхности почвы, но и на сравнительно большой глубине, а также в воде рек, морей и особенно в воде горячих ключей. Для получения термофильных бактерий в культурах применяют картофельные пластинки или же агаровые среды; сосуды с подобными средами засеваются исследуемыми материалами (частицами земли или экскрементов) и помещаются в термостате с температурой в 60—70° С. В термостате на картофеле уже обыкновенно на другой день после посева можно наблюдать появление бактериального налета, а если посев произведен в бульоне, то на другой день заметно значительное помутнение бульона и образование на дне сосуда осадка, часто в виде нитей, поднимающихся со дна при встряхивании сосуда. Надо заметить, однако, что не все термофильные бактерии развиваются в жидких средах, рост многих из них идет гораздо лучше на твердых средах, как, напр., картофель, агар и т. п., так что, очевидно, более или менее свободный приток воздуха играет значительную роль в их развитии. Найденные до сего времени термофильные бактерии представляют собой подвижные или неподвижные бактериальные формы, у которых довольно часто встречаются споры. Среди них попадаются и пигментные бактерии (красноватые, серовато-желтые и др.). Термофильные бактерии при высокой температуре и при свободном доступе воздуха (в условиях аэробиоза) развиваются гораздо лучше, чем при низких температурах в условиях анаэробиоза. В последних условиях, по исследованиям Л. Рабиновича, их рост весьма замедлен.

Информация о работе Планетарная роль микроорганизмов. Влияние температуры на бактерии и микроорганизмы