Автор работы: Пользователь скрыл имя, 22 Января 2015 в 11:42, реферат
В настоящее время проблема загрязнения водных объектов (рек, озер, морей, грунтовых вод и т.д.) является наиболее актуальной, т.к. всем известно – выражение «вода - это жизнь». Без воды человек не может прожить более трех суток, но даже понимая всю важность роли воды в его жизни, он все равно продолжает жестко эксплуатировать водные объекты, безвозвратно изменяя их естественный режим сбросами и отходами.
Введение
1. Гидросфера. Характеристика
2. Значение воды в биосфере
3. Вода как среда обитания. Адаптация к обитанию в воде
4. Особенности загрязнения Мирового океана и пресных вод. Экологические проблемы Иртышского бассейна
5. Методика очистки. Технология очистки питьевой воды
6. Биоиндикация
Заключение
Список литературы
По предварительным подсчетам, у китайского канала максимальный водозабор составит 10-11 % общего объема воды реки, что меньше 12 % предусматриваемых Хельсинскими соглашениями. Средний многолетний сток Черного Иртыша – 9 км3, но величина годового стока подвержена значительным колебаниям. Если в многоводные годы объем будет составлять 20 %, то в маловодные годы он может составить 50 % и более от стока Черного Иртыша, что может привести к серьезным экологическим и экономическим проблемам.
Казахстанские ученые считают, что под угрозой окажутся уникальные места воспроизводства биопродукции, существенно ухудшится самоочищающая способность озера Зайсан и Бухтарминского водохранилища, поскольку из Китая в реку Иртыш поступает уже загрязненная тяжелыми металлами, нитратами и нефтепродуктами вода. Снижение стока реки Иртыш при сохранении существующих объемов сброса промышленных предприятий в районе г. Усть-Каменогорска приведет к увеличению уровня загрязненности вод реки. Естественно это ухудшит качество питьевой воды. В свою очередь, это негативно отразится на здоровье людей.
Также внимание общества еще совсем недавно привлекало другое экологическое бедствие - угроза попадания ртути в реку Иртыш. Но в настоящее время уровень концентрации паров ртути в атмосферном воздухе достаточно стабильный, незначительное превышение ПДК наблюдается непосредственно на площадке бывшего корпуса №31 ОАО “Павлодарский химический завод”.
Сейчас на Павлодарском химическом заводе продолжаются работы по ликвидации очага ртутного загрязнения. Из-за несовершенства технологии некогда действовавшего здесь хлорного производства под землей скопилось более 900 тонн ртути. Угрозы, что ртуть попадет в Иртыш, как говорят специалисты, больше не существует. [3, 73-79 стр.]
5. Методика очистки. Технология очистки питьевой воды
Предварительная очистка воды
Если в качестве источника водоснабжения для приготовления питьевой воды используются поверхностные и подземные воды, требуется проведение тщательной предварительной очистки, которая включает в себя:
• первичное отстаивание с применением или без применения реагентов, в зависимости от состава исходной воды.
• коагуляция (т.е. введение в обрабатываемую воду солей алюминия, железа или полиэлектролитов), для укрупнения взвешенных и коллоидных частиц и перевода их в фильтруемую форму.
• механическая очистка воды с помощью фильтрования. Очистка воды с помощью фильтрования применяется для самых различных целей. Для очистки воды, подаваемой из общественных водопроводных сетей, как правило, применяется тонкое фильтрование с использованием:
или патронных фильтров (данный тип фильтров представляет собой колбу со сменным фильтрующим элементом – патроном (картриджем), по истечении срока службы которого, производится замена на новый фильтрующий элемент).
В качестве элементов очистки используют сетки и картриджи со степенью фильтрации от 5мкм до 1мм, в зависимости от уровня загрязнений. В технике подготовки воды из индивидуальных подземных или поверхностных источников водоснабжения наиболее широко применяют скорые напорные фильтры. В качестве фильтрующего материала в зависимости от целей фильтрации применяется кварцевый песок, антрацит, доломит.
Очистка воды от железа
Решение проблемы очистки воды от железа представляется довольно сложной и комплексной задачей, в связи с этим вряд ли возможно установить какие-либо универсальные правила очистки.
Наиболее часто используемыми методами при очистке воды от железа являются:
• аэрация, т. е. Нагнетание воздуха и интенсивный процесс окисления в емкости. Расход воздуха для насыщения воды кислородом составляет около 30 л/м3.
• обработка воды сильными окислителями – озон, хлор, гипохлорит натрия, перманганат калия.
• фильтрование через модифицированную загрузку (пропускание воды через материалы для удаления железа, которые осуществляют не только очистку воды от окисленного железа (осадка), но и от растворенного железа с помощью химического взаимодействия).
Типичная картина, которая наблюдается при подъеме железистой воды из скважины, такова: вначале вода, выкачанная из скважины, абсолютно прозрачна и кажется чистой, но проходит несколько десятков минут и вода мутнеет, приобретая специфический желтоватый цвет. Через несколько часов муть начинает оседать, образуя рыхлый осадок. Процесс осаждения может длиться несколько дней. Скорость осаждения зависит от температуры и состава воды. Наличие железа можно определить и на вкус. Начиная с концентрации 1,0-1,5 мг/л вода имеет характерный неприятный металлический привкус. Игнорирование проблемы железа в воде оканчиваются плохо, и стоит дорого: потеря «белизны» ванн, отказ импортной бытовой техники, систем отопления и нагрева воды. В системе горячего водоснабжения проблемы, обусловленные повышенным содержанием железа, многократно возрастают. Уже при концентрации 0,5 мг/л идет интенсивное появление хлопьев, образующих рыхлый шлам, который забивает теплообменники, радиаторы, трубопроводы, сужает их проходное сечение.
Российские санитарные нормы ограничивают концентрацию железа в воде для хозяйственно-питьевых нужд в пределах 0,3 мг/л. В подземной же воде она колеблется в пределах от 0,5 до 20 мг/л. В Центральном регионе, включая Подмосковье - от 0,5 до 10 мг/л, наиболее часто 3-5 мг/л.
Все многообразие методов, применяемых в технологии очистки воды от железа, можно свести к двум основным типам – реагентные (для восстановления фильтрующих свойств загрузки используется дополнительный реагент) и безреагентные (для восстановления фильтрующих свойств загрузки используется промывка водой). Очистку от железа поверхностных вод можно осуществлять лишь реагентными методами, а в очистке от железа подземных вод распространение получили оба метода.
Очистка воды от солей жесткости
С жесткой водой сталкивается каждый, достаточно вспомнить о накипи в чайнике. В жесткой воде хуже пенится стиральный порошок и мыло. Жесткая вода не годится при окрашивании тканей водорастворимыми красками, в пивоварении, производстве водки, негативно влияет на стабильность майонезов и соусов. Чай и кофе тоже лучше заваривать мягкой водой.
Жесткость воды определяется суммарным содержанием в ней растворенных солей кальция и магния. Гидрокарбонаты кальция и магния образуют карбонатную или временную жесткость воды, которая полностью устраняется при кипячении воды в течение часа. В процессе кипячения растворимые гидрокарбонаты переходят в нерастворимые карбонаты, выпадающие в виде белого осадка или накипи, с выделением при этом углекислого газа. Соли же сильных кислот, например, сульфаты и хлориды кальция и магния - образуют некарбонатную или постоянную жесткость, не изменяющуюся при кипячении воды.
Жесткость пресных природных водоемов меняется в течение года, имея минимум в период паводка. Артезианская вода, как правило, более жесткая, чем вода из поверхностных источников. В Подмосковье жесткость артезианских вод меняется от 3 до 15-20 мг-экв/л в зависимости от места и глубины скважины.
Высокая гидрокарбонатная (временная) жесткость воды делает её непригодной для питания газовых и электрических паровых котлов и бойлеров. Стенки котлов постепенно покрываются слоем накипи. Слой накипи в 1,5 мм снижает теплоотдачу на 15%, а слой толщиной 10 мм - снижает теплоотдачу уже на 50%.
Снижение теплоотдачи ведет к увеличению расхода топлива или электроэнергии, что в свою очередь ведет к образованию прогаров, трещин на трубах и стенках котлов, выводя преждевременно из строя системы отопления и горячего водоснабжения.
В тех случаях, когда вода слишком жесткая и её необходимо умягчить, применяют следующие методы очистки воды:
• термический, основанный на нагревании воды,
• дистилляция или вымораживание
• реагентный
• ионообменный
• обратный осмос
• электродиализ
• и комбинированный, представляющего собой различные сочетания перечисленных методов.
Очистка воды обеззараживанием
Обеззараживание питьевой воды имеет важное значение в общем цикле очистки воды и почти повсеместное применение, так как это последний барьер на пути передачи связанных с водой бактериальных и вирусных болезней. Обеззараживание воды является заключительным этапом подготовки воды питьевой кондиции. Использование для питья подземной и поверхностной воды в большинстве случаев невозможно без обеззараживания.
Обычными методами обеззараживания при очистке воды являются:
• хлорирование путем добавления хлора, диоксида хлора, гипохлорита натрия или кальция;
• озонирование воды;
• ультрафиолетовое облучение.
Очистка воды на активированном угле
Очистка воды на активированном угле чаще всего применяется на одной из последних ступеней очистки и является одним из классических способов получения питьевой воды. Такую дополнительную очистку воды необходимо в тех случаях, когда требуется устранить незначительные нарушения показателей цветности, вкуса и запаха воды. Активные угли также используются для очистки муниципальной водопроводной воды от хлора и хлорсодержащих соединений.
Очистка воды обратным осмосом
С помощью этого метода можно проводить глубокую очистку воды. При оптимальных значениях температуры и давления подаваемой воды, степень очистки воды обратным осмосом составляет 95-98%. Разделение воды и содержащихся в ней веществ достигается с помощью полупроницаемой мембраны. Сами мембраны изготавливаются из различных материалов, например, полиамида или ацетатцеллюлозы и выпускаются в виде полых волокон или рулонов. Через микроскопически малые поры этих мембран (размер порядка 0,0001 микрона), могут пройти только молекулы воды и кислорода, а микроорганизмы, растворенные в воде соли и органические соединения и т.п. задерживаются мембраной.
Степень очистки воды и связанная с этим производительность зависит от различных факторов, прежде всего от общего солесодержания сырой воды, а также солевого состава, давления и температуры.
На стадии предварительной очистки воды следует ее отфильтровать и при необходимости очистить от хлора. Особые преимущества обратного осмоса заключаются в его высокой экологической безопасности. [50-57 стр.]
6. Биоиндикация
Наиболее часто цитируемой и, в то же время, наиболее идеологически расплывчатой областью экологии является некоторая совокупность методов, называемая “биоиндикацией”. Хотя истоки наблюдений за индикаторными свойствами биологических объектов можно найти в трудах естествоиспытателей самой глубокой древности, до сих пор отсутствует стройная теория и адекватные методы биоиндикации.
Основой задачей биоиндикации является разработка методов и критериев, которые могли бы адекватно отражать уровень антропогенных воздействий с учетом комплексного характера загрязнения и диагностировать ранние нарушения в наиболее чувствительных компонентах биотических сообществ. Биоиндикация, как и мониторинг, осуществляется на различных уровнях организации биосферы: макромолекулы, клетки, органа, организма, популяции, биоценоза. Очевидно, что сложность живой материи и характера ее взаимодействия с внешними факторами возрастает по мере повышения уровня организации. В этом процессе биоиндикация на низших уровнях организации должна диалектически включаться в биоиндикацию на более высоких уровнях, где она предстает в новом качестве и может служить для объяснения динамики более высокоорганизованной системы.
Считается, что использование метода биоиндикации позволяет решать задачи экологического мониторинга в тех случаях, когда совокупность факторов антропогенного давления на биоценозы трудно или неудобно измерять непосредственно. К сожалению, современная практика биоиндикации носит в значительной мере феноменологический характер, выраженный в пространном изложении подмеченных исследователем фактов поведения различных видов организмов в конкретных условиях среды. Иногда эти описания сопровождаются не всегда обоснованными выводами, носящими, как правило, сугубо оценочный характер, основанными на чисто визуальных методах сравнения или использовании недостаточно достоверных индексов. Чаще всего такой "прогноз" делается, когда "общественное" мнение по конечному результату оценки качества экосистемы уже заранее известно, например, по прямым или косвенным параметрам среды. В результате этого, роль биоиндикации оказалась сведенной к следующей совокупности действий, технологически совпадающей с биомониторингом:
· выделяется один или несколько исследуемых факторов среды (по литературным данным или в связи с имеющейся программой мониторинговых исследований);
· собираются полевые и экспериментальные данные, характеризующие биотические процессы в рассматриваемой экосистеме, причем теоретически эти данные должны измеряться в широком диапазоне варьирования исследуемого фактора (например, в условно-чистых и в условно-грязных районах);