Особенности солнечной системы и планеты земля

Автор работы: Пользователь скрыл имя, 11 Сентября 2013 в 17:43, реферат

Краткое описание

В Солнечную систему входит Солнце, 9 больших планет вместе с их 34 спутниками, более 100 тысяч малых планет (астероидов) , порядка 10 в 11 степени комет, а также бесчисленное количество мелких, так называемых метеорных тел (поперечником от 100 метров до ничтожно малых пылинок) . Центральное положение в Солнечной системе занимает Солнце. Его масса приблизительно в 750 раз превосходит массу всех остальных тел, входящих в систему. Гравитационное притяжение солнца является главной силой, определяющей движение всех обращающихся вокруг него тел Солнечной системы. Среднее расстояние от Солнца до самой далекой от него планеты - Плутон 39,5 а. е., т.е. 6 миллиардов километров, что очень мало по сравнению с расстояниями до ближайших звёзд. Только некоторые кометы удаляются от Солнца на 100 тысяч а. е. и подвергаются воздействию притяжения звезд.

Прикрепленные файлы: 1 файл

Земля.docx

— 29.89 Кб (Скачать документ)

Магнитная съёмка тихоокеанского дна  в 1955 и 1957 гг. обнаружила простирающиеся почти параллельно с севера на юг "полосы" с магнитными полями аномальной напряжённости. А в 1963 г. были открыты полосовые магнитные  аномалии, вытянутые параллельно  хребту Карлсберг в Индийском океане. К этому времени уже стала довольно известной гипотеза, выдвинутая в 1960г. профессором Принстонского университета (США) Гарри Хессом и названная позже гипотезой спрединга, или "расширения морского дна". По ней, горячая полурасплавленная мантийная масса поднимается под срединно-океаническими хребтами, распространяется в стороны от них в виде мощных потоков, которые разрывают и расталкивают плиты литосферы в разные стороны. Мантийное вещество заполняет образовавшиеся с обеих сторон от хребтов трещины - рифты.

На площадь поверхности Земли (как и её объём) практически не изменилась за время её существования. Поэтому если новые участки поверхности наращиваются вдоль хребтов, то где-небудь они должны и уничтожаться. Вероятнее всего, это происходит в глубоководных океанских желобах. Эти так называемые зоны субдукции (поглощения) расположены вдоль вулканических дуг, протянувшихся в Тихом океане от Аляски вдоль Алеутских островов к Японии, Марианским островам и Филиппинам вплоть до Новой Зеландии и вдоль берегов Америки. Когда в этих зонах земная кора опускается до глубины 100 - 150 км, часть вещества плавится, образуя магму, которая затем в виде лавы прорывается наверх и извергается в вулканах.

Таким образом, земная кора создаётся  в рифтовых зонах океанов, как ленточный конвейер, движется со средней скоростью 5 см в год, постепенно остывая.

Гипотеза спрединга может хорошо объяснить магнитные аномалии морского дна. Если расплавленная порода, изливающаяся в срединно - океанических хребтах, затвердевает с обоих сторон от них, а затем расползается в противоположных направлениях, то она будет создавать полосы, намагниченные согласно с ориентацией магнитного поля в период их застывания. Когда поверхность меняется, вновь образовавшееся морское дно намагничивается в противоположном направлении. Чередование полос даёт подробную картину формирования морского дна по обеим сторонам от активного хребта, причём одна сторона является зеркальным отражением другой.

Первые же магнитные карты тихоокеанского дна у берегов Северной Америки, в районе хребта Хуан-де-Фука, показали наличие зеркальной симметрии. Ещё более симметричная картина обнаружена с обеих сторон центрального хребта в Атлантическом океане.

Используя концепцию дрейфа материков, известную сегодня как "новая  глобальная тектоника", можно восстановить взаимное расположение континентов  в далёком прошлом. Оказывается, 200 млн. лет назад она составляли единый материк.

5. Эволюция Земли

Вопрос ранней эволюции Земли тесно  связан с теорией её происхождения. Сегодня известно, что наша планета  образовалась около 4.6 млрд. лет назад. В процессе формирования Земли из частиц протопланетного облака постепенно увеличивалась её масса. Росли силы тяготения, а следовательно, и скорости частиц, падавших на планету. Кинетическая энергия частиц превращалась в тепло, и Земля всё сильнее разогревалась. При ударах на ней возникали кратеры, причём выбрасываемое из них вещество уже не могло преодолеть земного тяготения и падало обратно.

Чем крупнее были падавшие тела, тем  сильнее они нагревали Землю. Энергия удара освобождалась  не на поверхности, а на глубине, равной примерно двум поперечникам внедрившегося  тела. А так как основная масса  на этом этапе поставлялась планете  телами размером в несколько сот  километров, то энергия выделялась в слое толщиной порядка 1000 км. Она  не успевала излучится в пространство, оставаясь в недрах Земли. В результате температура на глубинах 100 - 1000 км могла приблизиться к точке плавления. Дополнительное повышение температуры, вероятно, вызывал распад короткоживущих радиоактивных изотопов.

По - видимому, первые возникшие расплавы представляли собой смесь жидких железа, никеля и серы. Расплав накапливался, а затем вследствие более высокой плотности просачивался вниз, постепенно формируя земное ядро. Таким образом, дифференциация (расслоение) вещества Земли могла начаться ещё на стадии её формирования. Ударная переработка поверхности и начавшаяся конвекция, несомненно, препятствовали этому процессу. Но определённая часть более тяжёлого вещества всё же успевала опуститься под перемешиваемый слой. В свою очередь дифференциация по плотности приостанавливала конвекцию и сопровождалась дополнительным выделением тепла, ускоряя процесс формирования различных зон в Земле.

Предположительно ядро сформировалось за несколько со миллионов лет. При постепенном остывании планеты богатый никелем железоникелевый сплав, имеющий высокую температуру плавления, начал кристаллизоваться - так зародилось твёрдое внутреннее ядро. К настоящему времени оно составляет 1.7% массы Земли. В расплавленном внешнем ядре сосредоточено около 30% земной массы.

Развитие других оболочек продолжалось гораздо дольше и в некотором  отношении не закончилось до сих  пор.

Литосфера сразу после своего образования  имела небольшую толщину и  была очень не устойчивой. Она снова  поглощалась мантией, разрушалась  в эпоху великой бомбардировки (от 4.2 до 3.9 млрд лет назад), когда Земля, как и Луна, подвергалась ударам очень крупных и довольно многочисленных метеоритов. На Луне и сегодня можно увидеть свидетельства метеоритной бомбардировки - многочисленные кратеры и моря (области, заполненные излившейся магмой). На нашей планете активные тектонические процессы и воздействие атмосферы и гидросферы практически стёрли следы этого периода.

Около 3.8 млрд лет назад сложилась первая лёгкая и, следовательно, "непотопляемая" гранитная кора. В то время планета уже имела воздушную оболочку и океаны; необходимые для их образования газы усиленно поставлялись из недр Земли в предшествующий период. Атмосфера тогда состояла в основном из углекислого газа, азота и водяных паров, кислорода в ней было мало, но он вырабатывался в результате, во - первых, фотохимической диссоциации воды и, во - вторых фотосинтезирующей деятельности простых организмов, таких, как сине - зелёные водоросли.

600 млн лет назад на Земле было несколько подвижных континентальных плит, весьма похожих на современные. Новый сверхматерик Пангея появился значительно позже. Он существовал 300 - 200 млн лет назад, а затем распался на части, которые и сформировали нынешние материки.

Что ждёт Землю в будущем? На этот вопрос можно ответить лишь с большой  степенью неопределённости, абстрагируя  как от возможного внешнего, космического влияния, так и от деятельности человечества, преобразующего окружающую среду, причём не всегда в лучшую сторону.

В конце концов недра Земли остынут до такой степени, что конвекция в мантии и, следовательно, движение материков (а значит, и горообразование, извержение вулканов, землетрясения) постепенно ослабнут и прекратятся. Выветривание со временем сотрёт неровности земной коры, и поверхность планеты скроется под водой. Дальнейшая её судьба будет определятся среднегодовой температурой. Если она значительно понизится, то океан замёрзнет и Земля покроется ледяной коркой. Если же температура повысится (а скорее к этому и приведёт возрастающая светимость Солнца), то вода испарится, обнажив равную поверхность планеты. Очевидно, ни в том, ни в другом случае жизнь человечества на Земле будет уже не возможна, по крайней мере в нашем современном представлении о ней.

6. Атмосфера Земли

В настоящее время Земля обладает атмосферой массой примерно 5.15*10 кг., т.е. менее миллионной доли массы планеты. Вблизи поверхности она содержит 78.08% азота, 20.05% кислорода, 0.94% инертных газов, 0.03% углекислого газа и в незначительных количествах другие газы.

Давление и плотность в атмосфере  убывают с высотой. Половина воздуха  содержится в нижних 5.6 км, а почти  вся вторая половина сосредоточена  до высоты 11.3 км. На высоте 95 километров плотность воздуха в миллион  раз ниже, чем у поверхности. На этом уровне и химический состав атмосферы  уже иной. Растёт доля лёгких газов, и преобладающими становятся водород  и гелий. Часть молекул разлагается  на ионы, образуя ионосферу.

Выше 1000 км. Находятся радиационные пояса. Их тоже можно рассматривать  как часть атмосферы, заполненную  очень энергичными ядрами атомов водорода и электронами, захваченными магнитным полем планеты.

7. Гидросфера Земли

Вода покрывает более 70% поверхности  земного шара, а средняя глубина  Мирового океана около 4 км. Масса гидросферы примерно 1.46*10 кг. Это в 275 раз больше массы атмосферы, но лишь 1/4000 от массы  всей Земли.

Гидросферу на 94% составляют воды Мирового океана, в которых растворены соли (в среднем 3.5%), а также ряд газов. Верхний слой океана содержит 140 трлн. тонн углекислого газа, а растворённого  кислорода - 8 трлн. тонн.


Информация о работе Особенности солнечной системы и планеты земля