Особенности определения жесткости воды

Автор работы: Пользователь скрыл имя, 05 Марта 2014 в 21:17, контрольная работа

Краткое описание

Вода - одно из самых уникальных и загадочных веществ на Земле. В данной работе показано значение определения жесткости воды как в жизни человека, так и в процессе мониторинга состояния окружающей среды.
Жёсткость - это особые свойства воды, обусловленные наличием в ней ионов кальция и магния, во многом определяющие её потребительские качества и потому имеющие важное хозяйственное значение.
Таким образом, в индивидуальной работе рассматривается, что жёсткая вода неблагоприятно воздействует не только на техническое и промышленное оборудование, но и на такие вещи как ткань, посуда, а также и на кожу человека и продукты питания.

Содержание

Введение……………………………………………………………………………..
1 ОБЩИЕ СВОЙСТВА ВОДЫ……………………..………………………………6
1.1 Особенности тепловых свойств воды……..……..….………………………….6
1.2 Физические свойства воды……………………...…..…………………………7
1.3 Химические свойства воды…..…………….………………………………….8
2 ЖЕСТКОСТЬ ВОДЫ ……………………..………………………………………9
2.1 Происхождение жесткости…………………………………………………..9
2.2 Определение жесткости воды……………………………………………….11
3 МЕТОДЫ ОПРЕДЕЛЕНИЯ ЖЕСТКОСТИ ВОДЫ…………………………16
3.1 Колориметрический метод…..…………………………...………………….16
3.2 Олеатный метод………………………………………………...……………16
3.3 Метод кислотно-основного титрования…………………………………..17
3.4 Комплексонометрический метод………………………………………….17
3.4.1 Теоретические основы метода……………………………………..19
3.4.2 Методика определения……………………………………………..22
3.4.3 Проведение анализа…………………………………………..….…24
4 МЕТОДЫ УСТРАНЕНИЯ ЖЕСТКОСТИ ВОДЫ……………………..……27
5 ЗНАЧЕНИЕ ВОДЫ В ЖИЗНИ ЧЕЛОВЕКА……………………………..….32
5.1 Влияние жесткости воды……………………………………………..….32
5.2 Влияние водных ресурсов на здоровье человека………………….…...34
5.3 Влияние питьевой воды на здоровье населения……………….…….….35
ВЫВОДЫ………………………………………………………………………....44
СПИСОК ЛИТЕРАТУРЫ………………………………………………….….…45

Прикрепленные файлы: 1 файл

Копия жесткость воды.docx

— 350.58 Кб (Скачать документ)

 

Таблица 2.1- Классификация воды по жесткости

 

 

Обычно в маломинерализованных водах преобладает (до 70%-80%) жесткость, обусловленная ионами кальция (хотя в отдельных редких случаях магниевая жесткость может достигать 50-60%). С увеличением степени минерализации воды содержание ионов кальция (Са2+) быстро падает и редко превышает 1 г/л. Содержание же ионов магния (Mg2+) в высокоминерализованных водах может достигать нескольких граммов, а в соленых озерах - десятков граммов на один литр воды.

В целом, жесткость поверхностных вод, как правило, меньше жесткости вод подземных. Жесткость поверхностных вод подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего в период половодья, когда обильно разбавляется мягкой дождевой и талой водой. Морская и океанская вода имеют очень высокую жесткость (десятки и сотни мг –экв/дм3) [8].

 

2.2 Определение жёсткости воды

Природная вода обязательно содержит растворённые соли и газы (кислород, азот и др.). Присутствие в воде ионов Mg2+ и Са2+ и некоторых других, способных образовывать твёрдые осадки при взаимодействии с анионами жизненных органических кислот, входящих в состав различных мыл (например, со стеарат-ионом С17Н35СОО2-), обуславливает так называемую жёсткость воды.

Во всех просмотренных нами научных источниках, понятие жёсткости воды обычно связано с катионами кальция (Са2+) и в меньшей степени магния (Mg2+). В действительности, все двухвалентные катионы в той или иной степени влияют на жёсткость. Они взаимодействуют с анионами, образуя соединения (соли жёсткости) способные выпадать в осадок. Одновалентные катионы (например, натрий Na+) таким свойством не обладают.

В данной таблице приведены основные катионы металлов, вызывающие жёсткость, и главные анионы, с которыми они ассоциируются:

 

Таблица 2.2- Основные катионы и анионы, обуславливающие жесткость воды

Катионы

Анионы

Кальций (Са2+) 

Гидрокарбонат (HCO3-)

Магний (Mg2+) 

Сульфат (SO42-)

Стронций (Sr2+) 

Хлорид (Cl-)

Железо (Fe2+) 

Нитрат (NO3-)

Марганец (Mn2+) 

Силикат (SiO32-)


 

 

На практике стронций, железо и марганец оказывают на жёсткость столь небольшое влияние, что ими, как правило, пренебрегают. Алюминий (Al3+) и трёхвалентное железо (Fe3+) также влияют на жёсткость, но при уровнях рН, встречающихся в природных водах, их растворимость и, соответственно, "вклад" в жёсткость ничтожно малы. Аналогично, не учитывается и незначительное влияние бария (Ва2+).

Чем выше концентрация указанных двухзарядовых катионов Mg2+ и Са2+ в воде, тем вода жёстче. Наличие в воде этих катионов приводит к тому, что при использовании, например при стирке, обычного мыла (но не синтетического моющего средства) часть его расходуется на образование с этими катионами нерастворимых в воде соединений так называемых жирных кислот (мыло представляет собой смесь натриевых и калиевых солей этих кислот):

 

2С17 Н35 СОО- + Са2+ = (С17Н 35СОО)2Са                              (2.1)

2С17Н 35 СОО- + Мg2+ = (С17Н 35СОО)2Mg                            (2.2)

 

и пена образуется лишь после полного осаждения ионов [9].

Мыла - это натриевые (иногда калиевые) соли органических кислот, и их состав можно условно выразить формулой NaR или KR, где R - кислотный остаток. Анионы R образуют с катионами кальция и магния нерастворимые соли CaR2 и MgR2 . На образование этих нерастворимых солей и расходуется бесполезно мыло. Таким образом, при помощи мыльного раствора мы можем оценить общую жёсткость воды, общее содержание в ней ионов кальция и магния.

Ионы кальция (Ca2+) и магния (Mg2+), а также других щёлочноземельных металлов, обуславливающих жёсткость, присутствуют во всех минерализованных водах. Их источником являются природные залежи известняков, гипса и доломитов. Ионы кальция и магния поступают в воду в результате взаимодействия растворённого диоксида углерода с минералами и при других процессах растворения и химического выветривания горных пород. Источником этих ионов могут служить также микробиологические процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий. В маломинерализованных водах больше всего ионов кальция. С увеличением степени минерализации содержание ионов кальция быстро падает и редко превышает 1 г/л. Содержание же ионов магния в минерализованных водах может достигать нескольких граммов, а в солёных водах нескольких десятков граммов.

В целом, жёсткость поверхностных вод, как правило, меньше жёсткости вод подземных. Жёсткость поверхностных вод подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего в период половодья, когда обильно разбавляется мягкой дождевой и талой водой.

 Жёсткость - это особые  свойства воды, во многом определяющие  её потребительские качества  и потому имеющие важное хозяйственное  значение.

Для тушения пожаров, полива огорода, уборки улиц и тротуаров жёсткость воды не имеет принципиального значения. Но в ряде случаев жёсткость воды может создать проблемы. При принятии ванны, мытье посуды, стирке, мытье машины жёсткая вода гораздо менее эффективна, чем мягкая. Это обуславливается некоторыми фактами:

· При использовании мягкой воды расходуется в 2 раза меньше моющих средств;

· Жёсткая вода, взаимодействуя с мылом, образует “мыльные шлаки”, которые не смываются водой и оставляют малосимпатичные разводы на посуде и поверхности сантехники;

· Во многих промышленных процессах соли жёсткости могут вступить в химическую реакцию, образовав нежелательные промежуточные продукты.

Жёсткая вода образует накипь на стенках нагревательных котлов, батареях, чем существенно ухудшает их теплотехнические характеристики. Накипь является причиной 90% отказов водонагревательного оборудования. Поэтому к воде, подвергаемой нагреву в котлах, бойлерах и т.п. предъявляются на порядок более высокие требования по жесткости. Тонкий слой накипи на греющей поверхности вовсе не безобиден, так как продолжительность нагревания через слой накипи, обладающей малой теплопроводностью, постепенно возрастает, дно прогорает все быстрее и быстрее - ведь металл охлаждается с каждым разом все медленнее и медленнее, долго находится в прогретом состоянии. В конце концов, может случиться так, что дно сосуда не выдержит и начнёт протекать. Этот факт очень опасен в промышленности, где существуют паровые котлы[10].

Жёсткая вода мало пригодна для стирки. Накипь на нагревателях стиральных машин выводит их из строя, она ухудшает ещё и моющие свойства мыла. Катионы Ca2+ и Mg2+ реагируют с жирными кислотами мыла, образуя малорастворимые соли, которые создают плёнки и осадки, в итоге снижая качество стирки и повышая расход моющего средства. А при стирке тканей жёсткой водой образующиеся нерастворимые соединения осаждаются на поверхности нитей и постепенно разрушают волокна.

Различают временную и постоянную жёсткость воды. Обусловлено это различие типом анионов, которые присутствуют в растворе в качестве противовеса кальцию и магнию.

Временная жёсткость воды обусловлена наличием в воде гидрокарбонатов, например, гидрокарбоната кальция Ca(HCO3)2 и магния Mg(HCO3)2.

При кипячении воды гидрокарбонаты разлагаются с образованием осадка среднего или основного карбоната:

 

Ca(HCO3)2 = СаСО3 + СО2+ Н2О                                          (2.3)

 

Mg(HCO3)2 = Мg (ОН) 2 СО3 + 3СО2 + Н2О                         (2.4)

 

и жёсткость воды снижается. Поэтому гидрокарбонатную жёсткость называют временной.

Остальная часть жёсткости, сохранившаяся после кипячения воды, называется постоянной жёсткостью (или некарбонатная). Она обусловлена присутствием в ней сульфатов, хлоридов и других растворимых соединений кальция и магния, которые хорошо растворимы и так просто не удаляются.

Также различают и общую жёсткость воды. Она определяется суммарной концентрацией ионов кальция и магния. Представляет собой сумму карбонатной (временной) и некарбонатной (постоянной) жёсткости.

Жёсткость воды измеряется в миллиграммах эквивалент на литр (м-экв/л). Обычно, жёсткой вода считается с жёсткостью 1 м-эвк/л и более.

Единицы измерения жёсткости воды: 

  • миллиграмм на литр(мг/л) 
  • миллиграмм эквивалент на литр,( м-экв/л) 

 

Таблица 2.3-Классификация воды по жёсткости

Мягкая  

<17,1 мг/л 

<0,35 мг-экв/л

Средней жёсткости 

60-120 мг/л 

1,2-2,4 мг-экв/л

Жёсткая 

120-0180 мг/л 

2,4-3,6 мг-экв/л

Очень жёсткая 

>180 мг/л 

>3,6 мг-экв/л


 

Особенно большой жёсткостью отличается вода морей и океанов. Так, например, кальциевая жёсткость воды в Чёрном море составляет 12 мг-экв/л, магниевая - 53,5 мг-экв/л, а общая - 65,5 мг-экв/л. В океанах же средняя кальциевая жёсткость равняется 22,5 мг-экв/л, магниевая - 108 мг-экв/л, а общая - 130,5 мг-экв/л [11].

 

 

 

 

 

 

 

 

 

 

3 МЕТОДЫ ОПРЕДЕЛЕНИЯ ЖЕСТКОСТИ ВОДЫ

 

  Для определения жесткости могут быть использованы:

 а) визуально-колориметрический  метод, пригодный для анализа  воды с очень малой жесткостью  порядка десятых долей микрограмм  – эквивалента в литре;

 б) объемный олеатный  метод, применяемый относительно  редко, обычно в тех случаях, когда  трилонатный метод оказывается  неэффективным.

 в) кислотно-основное  титрование.

 

3.1 Колориметрический метод

  Этот метод основан на различной интенсивности окраски хром темно – синего в зависимости от концентрации ионов Са2+ и Mg2+ в анализируемой воде и может быть использован для быстрого определения малых жесткостей воды (от 10 мкг – экв/л).

 

3.2 Олеатный метод

 Этот метод основан  на малой растворимости олеатов  кальция и магния. Поэтому добавление  раствора олеата калия к анализируемой  пробе воды и ее взбалтывание  вызывает сначала осаждение всех  содержащихся в воде ионов  кальция и магния в виде  олеата, и лишь затем избыток  олеата калия приводит к образованию  устойчивой пены, что и служит  признаком окончания титрования.

 Минимальное количество  олеата, уже вызывающее при взбалтывании  пробы воды появление пены, зависит  от концентрации в ней ионов  кальция и магния. Эта зависимость  не имеет характера прямой  пропорциональности и является  более сложной, что указывает  на отсутствие простых стехиометрических  соотношений при взаимодействии  олеата калия с ионами щелочноземельных  металлов.

Отсутствие стехиометрической закономерности не является, однако, препятствием для использования олеатного метода в целях определения жесткости, так как при соблюдении точного оговоренных условий в отношении температуры титруемой жидкости, ее объема, величины рН, частоты и интенсивности взбалтывания, характера пены, скорости прибавления олеатного раствора и т.д. можно получать этим методом хорошо воспроизводимые результаты.

 Олеатный метод определения  жесткости применим для анализа  вод, жесткость которых не превышает 0,5 мг–экв/л. Наименьшая жесткость, которая может быть достаточно  надежно зафиксирована олеатным  методом, составляет 2 мкг – экв/л. Таким образом, чувствительность  этого метода практически такая  же, как и трилонометрического.

 

3.3 Метод кислотно-основного титрования

 В основе кислотно-основного  титрования в водных растворах  лежат реакции взаимодействия  между кислотами и основаниями:

 

Н+ + ОН– = Н2О                                                             (3.1)

 

  С помощью этого метода прямым титрованием можно определить концентрацию кислоты или основания или содержание элементов, образующих кислоты или растворимые основания (например, фосфора – в виде фосфорной кислоты, мышьяка – в виде мышьяковой кислоты и т.п.)

Обратным титрованием или косвенными методами находят содержание некоторых солей (например, солей аммония, кальция и др.). Применяя специальные приемы, титруют смеси кислот с их солями, смеси кислых и средних солей и т.д.

 

3.4 Комплексонометрического метод

Титриметрический анализ является методом количественного анализа, в котором измеряют количество реактива, затраченного в ходе химической реакции, при этом используют точное измерение объемов реагирующих веществ. Окончание химической реакции происходит в точке эквивалентности, которая фиксируется различными методами, чаще всего при помощи индикаторов.

 Комплексометрическое  титрование основано на свойстве  этилендиаминтетрауксусной кислоты (ЭДТУ) и ее солей давать прочные  комплексные соединения с катионами  кальция и магния. На практике  чаще всего применяется Трилон  Б - кислая двузамещенная натриевая  соль этилендиаминтетрауксусной  кислоты. Это соединение в слабощелочной  среде при рН > 9 связывает во  внутрикомплексные соединения катионы  кальция и магния.

Информация о работе Особенности определения жесткости воды