Основные виды альтернативной энергии

Автор работы: Пользователь скрыл имя, 10 Апреля 2013 в 13:32, реферат

Краткое описание

Выход из создавшегося положения виделся в развитии атомной энергетики. На конец 1989 года в мире построено и работало более 400 атомных электростанций (АЭС). Однако сегодня АЭС уже не считаются источником дешевой и экологически чистой энергией. Топливом для АЭС служит урановая руда – дорогостоящее и трудно добываемое сырье, запасы которого ограничены. К тому же строительство и эксплуатация АЭС сопряжены с большими трудностями и затратами. Лишь немногие страны сейчас продолжают строительство новых АЭС.

Содержание

Введение 2
1. Основные виды Альтернативной энергии 5
1.1 Геотермальная энергия (тепло земли) 5
1.2 Энергия солнца 6
1.3 Энергия ветра 8
1.4 Энергия воды 10
1.5.Энергия волн 11
1.6 Энергия течений 14
1.7 Энергия водорода 16
2. Состояние и перспективы развития альтернативной энергетики в России 17
Заключение 21
Список используемой литературы 24

Прикрепленные файлы: 1 файл

источники реферат.docx

— 59.42 Кб (Скачать документ)

1.3 Энергия ветра

 

Уже очень давно, видя, какие  разрушения могут приносить бури и ураганы, человек задумывался  над тем, нельзя ли использовать энергию  ветра.

Ветряные мельницы с крыльями-парусами из ткани первыми начали сооружать  древние персы свыше 1,5 тыс. лет  назад. В дальнейшем ветряные мельницы совершенствовались. В Европе они  не только мололи муку, но и откачивали воду, сбивали масло, как, например в  Голландии. Первый электрогенератор был  сконструирован в Дании в 1890 г. Через 20 лет в стране работали уже сотни подобных установок.

Энергия ветра очень велика. Ее запасы по оценкам Всемирной метеорологической  организации, составляют 170 трлн кВт·ч  в год. Эту энергию можно получать, не загрязняя окружающую среду. Но у  ветра есть два существенных недостатка: его энергия сильно рассеяна в  пространстве и он непредсказуем  – часто меняет направление, вдруг  затихает даже в самых ветреных районах  земного шара, а иногда достигает  такой силы, что ломают ветряки.

Строительство, содержание, ремонт ветроустановок, круглосуточно  работающих в любую погоду под  открытым небом, стоит недешево. Ветроэлектростанция  такой же мощности, как ГЭС, ТЭЦ  или АЭС, по сравнению с ними должна занимать большую площадь. К тому же ветроэлектростанции небезвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями, создавая помехи приему телепередач в близлежащих населенных пунктах.

Принцип работы ветроустановок очень прост: лопасти, которые вращаются  за счет силы ветра, через вал передают механическую энергию к электрогенератору. Тот в свою очередь вырабатывает энергию электрическую. Получается, что ветроэлектростанции работают как игрушечные машины на батарейках, только принцип их действия противоположен. Вместо преобразования электрической  энергии в механическую, энергия  ветра превращается электрический  ток.

Для получения энергии  ветра применяют разные конструкции: многолопастные «ромашки»; винты вроде  самолетных пропеллеров с тремя, двумя и даже одной лопастью (тогда  у нее есть груз противовес); вертикальные роторы, напоминающие разрезанную вдоль  и насажанную на ось бочку; некое  подобие «вставшего дыбом» вертолетного винта: наружные концы его лопастей загнуты вверх и соединены  между собой. Вертикальные конструкции  хороши тем, что улавливают ветер  любого направления. Остальным приходится разворачиваться по ветру.

Чтобы как-то компенсировать изменчивость ветра, сооружают огромные «ветреные фермы». Ветродвигатели там  стоят рядами на обширном пространстве и работают на единую сеть. На одном  краю «фермы» может дуть ветер, на другом в это время тихо. Ветряки  нельзя ставить слишком близко, чтобы  они не загораживали друг друга. Поэтому  ферма занимает много места. Такие  фермы есть в США, во Франции, в  Англии, а в Дании «ветряную  ферму» разместили на прибрежном мелководье Северного моря: там она никому не мешает и ветер устойчивее, чем  на суше.

Чтобы снизить зависимость  от непостоянного направления и  силы ветра, в систему включают маховики, частично сглаживающие порывы ветра, и  разного рода аккумуляторы. Чаще всего  они электрические. Но применяют  также воздушные (ветряк нагнетает  воздух в баллоны; выходя оттуда, его  ровная струя вращает турбину  с электрогенератором) и гидравлические (силой ветра вода поднимается  на определенную высоту, а, падая вниз, вращает турбину). Ставят также электролизные  аккумуляторы. Ветряк дает электрический  ток, разлагающий воду на кислород и  водород. Их запасают в баллонах и  по мере необходимости сжигают в  топливном элементе (т.е. в химическом реакторе, где энергия горючего превращается в электричество) либо в газовой  турбине, вновь получая ток, но уже  без резких колебаний напряжения, связанного с капризами ветра.

Сейчас в мире работает более 30 тыс. ветроустановок различной  мощности. Германия получает от ветра 10% своей электроэнергии, а всей Западной Европе ветер дает 2500 МВт электроэнергии. По мере того как ветряные электростанции окупаются, а их конструкции совершенствуются, цена воздушного электричества падает. Так, в 1993 г. во Франции себестоимость 1 кВт·ч электроэнергии, полученной на ветростанции, равнялась 40 сантимам, а к 2000 году она снизилась в 1,5 раза. Правда энергия АЭС обходится всего в 12 сантимов за 1 кВт·ч.

1.4 Энергия воды

 

Уровень воды на морских побережьях в течение  суток меняется три раза. Такие  колебания особо заметны в  заливах и устьях рек, впадающих  в море. Древние греки объясняли  колебание уровня воды волей повелителя морей Посейдона. В XVIII в. английский физик Исаак Ньютон разгадал тайну морских приливов и отливов: огромные массы воды в мировом океане приводятся в движение силами притяжения Луны и Солнца. Через каждые 6 ч 12 мин прилив сменяется отливом. Максимальная амплитуда приливов в разных местах нашей планеты неодинакова и составляет от 4 до 20 м.

Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины. Во время прилива вода поступает  в бассейн. Когда уровни воды в  бассейне и море сравняются, затворы  водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор  становится достаточным, турбины и  соединенные с ним электрогенераторы  начинают работать, а вода из бассейна постепенно уходит. Считается экономически целесообразным строительство ПЭС  в районах с приливными колебаниями  уровня моря не менее 4 м. Проектная мощность ПЭС зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины.

В приливных  электростанциях двустороннего  действия турбины работают при движении воды из моря в бассейн и обратно. ПЭС двустороннего действия способна вырабатывать электроэнергию непрерывно в течение 4-5 ч с перерывами в 1-2 ч четыре раза в сутки. Для увеличения времени работы турбин существуют более  сложные схемы – с двумя, тремя  и большим количеством бассейнов, однако стоимость таких проектов весьма высока.

Первая  приливная электростанция мощностью 240 МВт была пущена в 1966 г. во Франции в устье реки Ранс, впадающей в Ла-Манш, где средняя амплитуда приливов составляет 8,4 м. 24 гидроагрегата ПЭС вырабатывают в среднем за год 502 млн. кВт. час электроэнергии. Для этой станции   разработан приливный капсульный агрегат, позволяющий осуществлять три прямых и три обратных режима работы: как генератор, как насос и как водопропускное отверстие, что обеспечивает эффективную эксплуатацию ПЭС. По оценкам специалистов, ПЭС на реке Ранс экономически оправдана, годовые издержки эксплуатации ниже, чем на гидроэлектростанциях, и составляют 4% капитальных вложений. Электростанция входит в энергосистему Франции и эффективно используется.

В 1968 г. на Баренцевом море, недалеко от Мурманска, вступила в строй опытно-промышленная ПЭС проектной мощностью 800 кВт. Место ее строительства – Кислая Губа представляет собой узкий залив шириной 150 м и длиной 450 м. Хотя мощность Кислогубской ПЭС невелика, ее сооружение имело важное значение для дальнейших исследовательских и проектно-конструкторских работ в области использования энергии приливов.

Существуют  проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м. Планируется использовать также огромный потенциал Охотского моря, где местами, например на Пенжинской губе, высота приливов составляет 12,9 м, а в Гижигинской губе – 12-14 м.

Работы  в этой области ведутся и за рубежом. В 1985 г. пущена в эксплуатацию ПЭС в заливе Фанди в Канаде мощностью 20 МВт (амплитуда приливов здесь составляет 19,6 м). В Китае построены три приливные электростанции небольшой мощности. В Великобритании разрабатывается проект ПЭС мощностью 1000 МВт в устье реки Северн, где средняя амплитуда приливов составляет 16,3 м

С точки  зрения экологии ПЭС имеет бесспорное преимущество перед тепловыми электростанциями, сжигающими нефть и каменный уголь. Благоприятные предпосылки для  более широкого использования энергии  морских приливов связаны с возможностью применения недавно созданной трубы  Горлова, которая позволяет сооружать  ПЭС без плотин, сокращая расходы  на их строительство. Первые бесплотинные ПЭС намечено соорудить в ближайшие  годы в Южной Корее.

1.5.Энергия волн

 

Идея  получения электроэнергии от морских  волн была изложена еще в 1935 г. советским ученым К.Э. Циолковским.

В основе работы волновых энергетических станций  лежит воздействие волн на рабочие  органы, выполненные в виде поплавков, маятников, лопастей, оболочек и т.п. Механическая энергия их перемещений  с помощью электрогенераторов преобразуется  в электрическую. Когда буй качается по волне, уровень воды внутри него меняется. От этого воздух то выходит  из него, то входит. Но движение воздуха  возможно только лишь через верхнее  отверстие (такова конструкция буя). А там установлена турбина, вращающаяся  всегда в одном направлении независимо от того в каком направлении движется воздух. Даже довольно небольшие волны  высотой 35 см заставляют турбину развивать более 2000 оборотов в минуту. Другой тип установки – что-то вроде стационарной микроэлектростанции. Внешне она похожа на ящик, установленный на опорах на небольшой глубине. Волны проникают в ящик и приводят в действие турбину. И здесь для работы достаточно совсем небольшого волнения моря. Даже волны высотой в 20 см зажигали лампочки общей мощностью 200 Вт.

В настоящее  время волноэнергетические установки  используются для  энергопитания  автономных буев, маяков, научных приборов. Попутно крупные волновые станции  могут быть использованы для волнозащиты  морских буровых платформ, открытых рейдов, морекультурных хозяйств. Началось промышленное использование волновой энергии. В мире  уже  около 400 маяков и навигационных буев получают питание  от волновых установок. В Индии от волновой энергии работает плавучий маяк порта Мадрас. В Норвегии с  1985 г. действует первая в мире промышленная волновая станция мощностью 850 кВт.

Создание  волновых электростанций определяется оптимальным выбором акватории  океана с устойчивым запасом волновой энергии, эффективной конструкцией станции, в которую встроены устройства сглаживания неравномерного режима волнения. Считается, что эффективно волновые станции могут  работать при использовании мощности около 80 кВт/м. Опыт эксплуатации существующих установок показал, что вырабатываемая ими электроэнергия пока в 2-3 раза дороже традиционной, но в будущем ожидается  значительное снижение ее стоимости.

В волновых установках с пневматическими преобразователями  под  действием волн воздушный  поток периодически изменяет свое направление  на обратное. Для этих условий и  разработана турбина Уэллса, ротор  которой обладает выпрямляющим действием, сохраняя неизменным  направление  своего вращения при смене направления  воздушного потока, следовательно, поддерживается неизменным и направление вращения генератора. Турбина нашла широкое  применение в различных волноэнергетических  установках.

Волновая  энергетическая установка "Каймей" ("Морской свет") – самая  мощная действующая энергетическая установка  с пневматическими  преобразователями – построена  в Японии в 1976 г. В своей работе она использует волны высотой до 6 – 10 м. На барже длиной 80 м, шириной 12 м и водоизмещением 500 т установлены 22 воздушных камеры, открытые снизу. Каждая пара камер работает на одну турбину Уэллса. Общая мощность установки 1000 кВт. Первые испытания были проведены в 1978 – 1979 гг. близ города Цуруока. Энергия передавалась на берег по подводному кабелю длиной около 3 км. В 1985 г. в Норвегии в 46 км  к северо-западу  от города  Берген построена промышленная  волновая станция, состоящая из двух установок. Первая установка на острове Тофтесталлен  работала  по пневматическому принципу. Она представляла собой железобетонную камеру, заглубленную в скале; над ней была установлена стальная башня высотой 12,3 мм  и диаметром 3,6 м.  Входящие в камеру волны создавали изменение объема воздуха. Возникающий поток через систему клапанов приводил  во вращение турбину и связанный с ней генератор мощностью 500 кВт, годовая выработка составляла 1,2 млн. кВт. ч. Зимним штормом в конце 1988 г. башня станции была разрушена. Разрабатывается проект  новой башни из железобетона.

Конструкция второй установки состоит из конусовидного  канала в ущелье  длиной около  170 м с бетонными стенками высотой 15 м и шириной в основании 55 м, входящего в резервуар между островами, отделенный от моря дамбами, и плотины с энергетической установкой. Волны, проходя по сужающемуся каналу, увеличивают свою высоту с 1,1  до 15 м и вливаются в резервуар, уровень которого на 3 м выше уровня моря. Из резервуара вода проходит через низконапорные гидротурбины мощностью 350 кВт. Станция ежегодно производит до 2 млн. кВт.·ч электроэнергии.

А в Великобритании разрабатывается оригинальная конструкция  волновой энергетической установки  типа "моллюск", в которой в  качестве рабочих органов используются мягкие оболочки – камеры. В них  находится воздух под давлением, несколько большим атмосферного. Накатом волн камеры сжимаются, образуется замкнутый воздушный поток  из камер в каркас установки и  обратно. На пути потока  установлены  воздушные турбины Уэллса с электрогенераторами. Сейчас создается  опытная плавучая установка из 6 камер, укрепленных  на каркасе длиной 120 м и высотой 8 м. Ожидаемая мощность 500 кВт. Дальнейшие разработки показали, что наибольший эффект дает расположение камер по кругу. В Шотландии на озере Лох-Несс была испытана установка, состоящая из 12 камер и 8 турбин. Теоретическая мощность такой установки до 1200 кВт.

Впервые конструкция волнового плота  была запатентована в СССР еще  в 1926 г. В 1978 г. в Великобритании проводились испытания опытных моделей океанских электростанций, в основе которых лежит аналогичное решение. Волновой плот  Коккерела состоит из шарнирно соединенных секций,  перемещение которых относительно друг друга передается насосам с электрогенераторами. Вся конструкция удерживается на месте якорями. Трехсекционный волновой плот Коккерела длиной 100 м, шириной 50 м и высотой 10 м может дать мощность до 2 тыс. кВт.

Информация о работе Основные виды альтернативной энергии