Описание существующих методов очистки воздуха от вредных газообразных примесей

Автор работы: Пользователь скрыл имя, 14 Января 2013 в 12:55, доклад

Краткое описание

соединения серы, галогенов, фосфора, могут превосходить по токсичности исходный газовый выброс. В этом случае необходима дополнительная очистка. Термическое дожигание весьма эффективно при обезвреживании газов, содержащих токсичные вещества в виде твердых включений органического происхождения (сажа, частицы углерода, древесная пыль и т.д.).

Прикрепленные файлы: 1 файл

Экология 1.docx

— 53.74 Кб (Скачать документ)

Для больших объектов (и  больших расходов) более рациональным является схема: первичный отстойник - аэротенк - вторичный отстойник. Очистка сточных вод в аэротенках происходит за счет смешивания сточных вод с возвратным активным илом из вторичного отстойника и зоны аэрации. Бактерии, находящиеся в хлопьях ила, поглощают растворенные вещества органические загрязнения и оседают во вторичном отстойнике. После осаждения во вторичном отстойнике активный ил опять направляется в аэротенк для осуществления процесса очистки. Так как бактерии размножаются очень быстро, то при большой нагрузке на сооружение концентрация активного ила становится очень большой, поэтому избыточный активный ил необходимо периодически удалять. Он отводится к первичному отстойнику, где смешивается с сырым осадком и далее осадочная смесь направляется на сооружения обезвоживания и утилизации осадка (например, установки OZK). В противоположность биофильтрации аэрация, рециркуляция и смешивание сточных вод с активным илом в аэротенке происходят искусственным путем. К аэротенку подводятся сточные воды, возвратный активный ил и воздух. Методы подвода могут быть весьма разнообразны. Воздух подводится ко всему резервуару; если возможно управление подачей кислорода, то необходимо подавать в начале сооружения большее количество кислорода и меньшее - в конце сооружения. Системы аэрации в АЧБ пневматические. Сжатый воздух подается в сооружение под давлением через пористые аэраторы.

 

     Очистка  газов в производстве аммиака  и углеамиакатов

 

Различные методы очистки  применяют почти на всех стадиях  в процессе производства аммиака. Это  необходимо и для предотвращения отравления катализаторов, и для  снижения концентрации ненужных, а  зачастую и вредных, примесей циркулирующих  в установке, что помогает работать при стабильных условиях, экономить  энергию и повышать эффективность  производства. Также проводится очистка  конечного продукта, для улучшения  его качества, а выбрасываемые  в атмосферу промышленные газы очищают  с целью охраны воздушного пространства от загрязнений вредными веществами.

Очистка после  газификации 

Все катализаторы парового риформинга, используемые на заводах  по производству аммиака, в большей  или меньшей степени чувствительны  к присутствию серы. Первой стадией  почти на каждом таком заводе является стадия гидродесульфирования и улавливания  серы. 
При газификации тяжелого сырья невозможно провести предварительное десульфирование, и сера (чаще всего в виде сероводорода) попадает в блок очистки вместе с сырым синтез-газом. Синтез-газ имеет также высокое содержание угарного газа, который отнимает тепло на стадии очистки. 
В системах газификации с низким давлением принято удалять кислые газы в два этапа – сероводород перед высокотемпературной стадией очистки, а углекислый газ после. Но в наши дни, согласно докладу фирмы Johnson Matthey Catalysts, существуют катализаторы, которые нечувствительны к сере и способны противостоять большим температурам, возникающим при высоком парциальном давлении диоксида углерода. На современных заводах, где проводят газификацию при высоком давлении, обычно неочищенный синтез-газ пропускают через «кислую» стадию (всего две стадии с промежуточным теплообменником), и потом удаляют кислотные газы в отдельной установке. Эти катализаторы, в качестве активных компонентов содержат кобальт и молибден, а не железо и хром, как это было раньше. Они способны значительно снизить содержание угарного газа в составе синтез-газа, а остатки можно удалить на конечном этапе – промывке жидким азотом. Таким образом, нет необходимости в низкотемпературном этапе очищения и его чувствительном медноцинковом катализаторе.

 

Усовершенствование  системы очистки от C02 
Большинство заводов по производству аммиака, основанных на процессе парового риформинга используют систему удаления углекислого газа с помощью химической абсорбции. Этот прием является энергозатратным. Больших успехов удалось достигнуть за последние годы в вопросах понижения потребления энергии и усовершенствования химии промывных растворов. 
Существует два основных типа очистки: алканоламинами и горячим карбонатом калия. Компания Indo Gulf Fertilizers (IGF) предлагает одну из своих последних разработок 1520/2620 t/a. Это разработка Giammarco-Vetrocoke (GV) с двухэтапной системой регенерации (100 и 20 кПа), использующая глицин и диэтаноламин в качестве активаторов. Как было установлено, эта методика позволяет снизить содержание C02 до 0,1%. 
Компания IGF предложила модифицировать схему для повышения эффективности процесса.Была встроена маленькая дополнительная испарительная емкость, функционирующая при 30 кПа, и новая тарелка для отбора фракции. Раствор, покидающий колонну низкого давления, передается в главную секцию абсорбера. Пар, образовавшийся при мгновенном испарении, и углекислый газ из испарительной емкости попадают в регенератор высокого давления всего на одну тарелку ниже, а не в самое основание. Поток раствора из регенератора высокого давления в регенератор низкого давления в основном увеличивается с 200 до 350 м³/ч. Раствор со дна колонны высокого давления, становится чище, и через другую испарительную емкость попадает в секцию тонкой очистки C02. Процесс, модифицированный таким образом, позволяет снизить содержание C02 в составе очищенного газа до 0,04%.


 

  1.     Физико-химические методы очистки.  

Данные методы используют для очистки от растворенных примесей, а в некоторых случаях  и от взвешенных веществ. Многие методы физико-химической очистки требуют  предварительного глубокого выделения  из сточной воды взвешенных веществ, для чего широко используют процесс коагуляции.   

В настоящее  время в связи с использованием оборотных систем водоснабжения  существенно увеличивается применение физико-химических методов очистки  сточных вод,основными из которых  являются:  флотация, сорбция,ионообменная и электрохимическая очистка, гиперфильтрация, нейтрализация, экстракция, эвапорация, выпаривание, испарение и кристаллизация.


 

Флотация


 

Флотация предназначена  для извлечения из воды гидрофобных  частиц (нефтепродукты) пузырьками газа, подаваемого в сточную воду. В основе этого процесса имеет место молекулярное слипание частиц масла и пузырьков тонкодиспергированного в воде газа. Образование агрегатов «частица — пузырьки газа» зависит от интенсивности их столкновения друг с другом, химического взаимодействия содержащихся в воде веществ, избыточного давления газа в сточной воде и т. п.  

Флотация —  метод извлечения из жидкости диспергированных и коллоидных включений, основанный на способности частиц прилипать  к газовым пузырькам (образуя флотокомплексы) и переходить вместе с ними в пенный слой. Сущность флотационного процесса заключается в специфическом действии молекулярных сил, вызывающих слипание частиц примесей с пузырьками газа, всплывание флотокомплексов и образованию на поверхности жидкости пенного слоя, содержащего извлеченные вещества. Слипание пузырьков воздуха происходит только с гидрофобными частицами (несмачиваемыми водой) или частицами, имеющими гидрофобные участки поверхности. Следовательно, для интенсификации флотационного процесса рекомендуется использовать реагенты, которые, находясь в воде, сорбируются на поверхности частиц, понижая их смачиваемость, а значит, повышают гидрофобизацию загрязнений. Кроме того следует отметить, что понижение поверхностного натяжения повышает эффект флотационной очистки воды. Образование флотокомплексов (агрегатов «частица — пузырьки газа») зависит от интенсивности их столкновения друг с другом, химического взаимодействия содержащихся в воде веществ, избыточного давления газа в сточной воде и т. п.  

В зависимости  от способа образования пузырьков  газа различают следующие виды флотации: напорную,  пневматическую,  механическую, электрофлотацию,пенную,химическую, вибрационную, биологическую и др,  

В настоящее время на станциях очистки широко используют напорную, пневматическую и электрофлотацию.


Вид содержащихся в воде загрязнений определяет характер флотационной обработки: одним воздухом или воздухом в сочетании с  различными реагентами, прежде всего  коагулянтами Использование коагулянтов  позволяет значительно повысить эффективность флотационной очистки и удалять загрязнения находящиеся в воде в виде стойких эмульсий и взвесей, а также в коллоидном состоянии.  

Важное значение имеют также условия и способы  удаления пены.  

Пена образуется на поверхности воды в результате всплывания пузырьков воздуха, несущих на себе удаляемые из воды примеси. Она должна быть достаточно прочной и не допускать попадания загрязнений в воду. Кроме того, пена должна обладать определенной подвижностью при перемещении её к сбросным устройствам. Устойчивость и подвижность пены зависит от свойств и количества реагентов и загрязнений, вносимых в пенный слой. Стабилизации пены способствует наличие в воде хлопьев коагулянта, мелких частиц взвеси и поверхностно-активных веществ. Как правило, удаление пены из флотатора производят либо кратковременным подъемом уровня воды с отводом ее через лотки, расположенные равномерно по площади камеры, либо с помощью скребковых механизмов (пеногонов), перемещающих пену к сборным лоткам.

 

 

 

Метод пневматической флотации


 

   

Метод пневматической флотации. Данный метод основан на подаче сжатого газа (воздуха) в аэрационно-распределительную  систему флотокамеры.  

Аэрационная система  представляет собой мелкопузырчатые  аэраторы различных типов – мембранные дисковые аэраторы, перфорированные  резиновые шланги, пористые трубы  и пластины и т.д. Газ под давлением  проходит через отверстия аэраторов  и в виде пузырьков одинакового диаметра выходит в очищаемую жидкость. Пузырьки под действием силы Архимеда всплывают, встречая на своем пути частицы загрязнений и образуя с ними довольно устойчивые комплексы.  

За счет равномерной  подачи воздуха и образования  пузырьков с одинаковыми размерами обстановка во флотационной камере спокойная, что обеспечивает надежный подъем флотокомплексов и получение устойчивого пенного продукта. 

 

Метод напорной флотации


 

      

Метод напорной  флотации.  Сущность этого метода заключается выделении пузырьков газа из пресыщенного раствора при перепаде давления. Газ выделяется в виде микропузырьков, зарождающихся непосредственно на частицах загрязнения, образуя прочные флотокомплексы. В данном методе во флотационную камеру подается два потока воды: очищаемая вода и рабочая жидкость (вода насыщенная растворенным газом в количестве 10% от общего потока). Рабочая жидкость готовится в сатураторе – аппарате, где происходит растворение газа. Рабочее давление в сатураторе составляет 3-9 Бар, время растворения не более 5 минут. В качестве рабочей жидкости может использоваться или исходная вода, но при этом усложняется эксплуатация, или очищенная вода, при этом увеличиваются габариты флотокамеры.   

Очищаемая вода равномерно вводится во флотокамеру. Поток  рабочей жидкости вводится через  форсунки с высокой скоростью - 15-20 м/с. В результате резкого снижения давления на частицах загрязнений выделяется газ и протекает флотационный процесс.   

Способ напорной флотации позволяет путем регулирования  давления легко изменять количество растворенного воздуха и размер пузырьков, вводимых в обрабатываемую воду, в зависимости от состава  взвеси в исходной воде.  

Основные достоинства  и недостатки метода напорной флотации.   

Процесс напорной флотации отличается высокой эффективностью захвата мельчайшими пузырьками воздуха частиц загрязнений за счет того, что пузырьки выделяются из раствора непосредственно на загрязнениях, образуя хорошо сохраняющиеся флотокомплексы. Прочность флотокомплексов обеспечивается за счет малости размеров пузырьков, а также за счет того, что на одной частичке может образоваться несколько пузырьков. Однако скорость подъема таких флотокомплексов довольно низкая, а порой мельчайшие пузырьки не могут поднять частицу и комплекс находится во взвешенном состоянии, что можно увидеть при помощи стереомикроскопа. Таким образом, при напорной флотации обеспечивается прочное слипание пузырьков с загрязнениями, но при этом наблюдается небольшая скорость подъема образующихся флотокомплексов.

 

Метод механической флотации.


 

   

Метод механической флотации.  

Основным элементом  в данном методе является импеллерный  блок, включающий электродвигатель и  импеллер в обсадной трубе.  

За счет высокой  скорости вращения создается воронка  и разряжение в нижней части, через  отверстия обсадной трубы подсасывается воздух и попадает под вращающиеся лопатки, которые его дробят на мелкие пузырьки. Именно эти пузырьки и распределяются по объему жидкости и благодаря им протекает процесс флотации. Мелкие флотокомплексы, не успевшие подняться, задерживаются в тонкослойном осветлителе.

 

Метод электрофлотации.


 

   

Метод электрофлотации.   

Сущность этого  метода заключается выделении газовых  пузырьков на электродах при прохождении электрического тока.  

В настоящее  время на станциях очистки широко используют электрофлотацию, так как  протекающие при этом электрохимические  процессы обеспечивают дополнительное обеззараживание сточных вод. Кроме  того, применение для электрофлотации алюминиевых или стальных электродов обусловливает переход ионов алюминия или железа в раствор, что способствует коагулированию мельчайших частиц механических примесей сточной воды.  

Для очистки  сточных вод электрофлотацией нами разработаны опытные лабораторные и промышленные аппараты с вертикальным и горизонтальным расположением электродов. Аппарат с вертикальным расположением электродов состоит из корпуса и электродов, пространство между которыми заполнено очищаемой жидкостью. При подключении электродов к источнику питания происходит выделение газов на электродах: на аноде - кислорода, на катоде - водорода. Наряду с этим происходит растворение анода, изготовленного из дюралюминия (или стали). Образующийся гидроксид алюминия (железа) сорбирует частицы загрязнений с образованием хлопьев. Одновременно пузырьки кислорода и водорода слипаются с образующимися хлопьями. Флотокомплексы хлопья - пузырьки газов поднимаются вверх и образуют пенный слой. 

 

Сорбция  

Сорбцию применяют  для очистки жидкостей и газов от растворимых примесей. Процессы сорбции могут протекать:на поверхности (адсорбция); в объеме (абсорбция).  

Адсорбция - называется процесс избирательного поглощения примесей из жидкостей или газов поверхностями твердых материалов - адсорбентов. Особенностью адсорбционных методов улавливания примесей является их относительно высокая эффективность в области малых концентраций примесей при значительных расходах перерабатываемых потоков.  

Избирательное поглощение молекул поверхностью твердого адсорбента происходит вследствие воздействия на них неуравновешенных поверхностных сил адсорбента.  

Различают два  вида адсорбции:  физическая адсорбция, протекает за счет сил молекулярного взаимодействия, химическая адсорбция (хемосорбция), протекает за счет вступления в химическую реакцию молекулы поглощаемого вещества с молекулами поверхности адсорбента.  

Процесс физической адсорбции обратимый, поэтому на практике после стадии адсорбции  часто проводят обратный процесс  – десорбции. Необходимость десорбции обусловлена либо требованием регенерации адсорбента для его последующего использования в процессе адсорбции, либо необходимостью выделить целевой компонент в чистом или концентрированном виде. В качестве адсорбентов используют любые мелкодисперсные материалы: золу; торф; цеолиты; силикагели; опилки; шлаки глину. Наиболее эффективный сорбент — активированный уголь.  

Активированный  уголь  

Активированный  уголь получают термической обработкой дерева, углей (каменного и бурого), антрацита и других углеродосодержащих веществ. Они изготавливаются и используются в виде гранул размером 2—5 мм. Угли, предназначенные для поглощения относительно крупных молекул примесей из жидкостей, должны иметь развитую структуру переходных пор. Активные угли, как правило, имеют хорошие адсорбционные свойства по отношению к молекулам органических веществ, но имеют низкую механическую прочность.   

Силикагель  

Силикагель получаюттермообработкой аморфного кремнезема. Мелкопористые силикагели обладают высокой адсорбционной способностью по отношению к молекулам влаги и более высокой по сравнению с активными углями механической прочностью. Выпускаются мелко-, средне- и крупнопористые силикагели. Другим типом неорганических адсорбентов, широко применяемых для осушки различных сред и иных процессов избирательной адсорбции, является активный оксид алюминия и алюмогели, свойства и область использования которых близки к силикагелям.  

Алюмогель  

Алюмогель - неорганический адсорбент, широко применяемый для  осушки различных сред и иных процессов избирательной адсорбции, свойства и область использования алюмогеля близки к силикагелям.   

Цеолиты  

Цеолиты представляют собой алюмосиликаты и отличаются регулярной пористой структурой. Из мелких кристалликов природных или синтетических  цеолитов при помощи связующего или без него формируются гранулы размером 2?4 мм. Цеолиты широко применяются для улавливания паров воды, а также в нефтеперерабатывающей промышленности для очистки и регенерации масел, повышения степени очистки и качества жидких топлив. Как и другие адсорбенты, цеолиты используются для очистки продуктов пищевой промышленности, сточных вод и промышленных газовых выбросов от органических примесей. Цеолиты обладают ионообменными свойствами, которые в настоящее время широко используются в промышленности и сельском хозяйстве. Цеолиты имеют необычайно широкую сферу использования в промышленности и сельском хозяйстве. Они применяются в нефтехимии, как осушитель газов и сред, для очистки питьевых и технических вод, для извлечения радионуклидов, в качестве катализатора, в строительстве, для улучшения почвы, в качестве удобрения, для подкормки животных и т.д.  

Промышленные  адсорбенты за счет пористой структуры  обладают развитой внутренней поверхностью, что позволяет поглощать значительные количества адсорбируемого компонента (до 0,3 кг/кг). Для адсорбционной очистки воды применяют в основном два типа фильтров: зернистые фильтры и  паронитовые Абсорбция - называется процесс извлечения компонента из одной фазы и растворение его в другой фазе—в поглотителе.  

Требования, предъявляемые  к поглотителю:

1. высокая поглотительная  способность (высокой поглотительной  способностью обладают такие  поглотители, для которых давление  насыщенных паров компонента  над его раствором в поглотителе  при температуре абсорбции мало);

2.поглотитель должен легко десорбироваться (регенерироваться);

3.иногда должен обладать селективностью (т.е. поглощать только определенные компоненты);

4. должен обладать низкой  летучестью (низким давлением паров);

5. он должен сохранять  свои свойства в процессе работы;

6. он должен быть дешевым  и доступным;

7. не должен оказывать  коррозионного действия;

8. обладать высоким коэффициентом  массопередачи.   

Обычно один поглотитель не обладает всеми требуемыми свойствами, поэтому следует выбирать абсорбент по основным свойствам.  

Абсорберы представляют собой колонны, в которых протекает  поглощающая жидкость, через которую пробулькивает очищаемый газ. Для обеспечения надежного контакта газа с жидкостью, а также увеличения времени пребывания газа в аппарате, в колонне находятся специальные тарелки и насадки. Наиболее просты по конструкции провальные тарелки, их разновидность — гофрированные провальные тарелки. Диаметр сливных отверстий равен 4 - 8 мм. Иногда применяют клапанные провальные тарелки. Их достоинством является то, что когда газ не проходит через колонну жидкость не протекает, т.е. такие тарелки более экономичные.

Информация о работе Описание существующих методов очистки воздуха от вредных газообразных примесей