Очистка сточных вод от ионов тяжелых металлов

Автор работы: Пользователь скрыл имя, 15 Декабря 2014 в 23:28, реферат

Краткое описание

Пpоизводства, связанные с химической и электpохимической обpаботкой металлов, являются одними из наиболее вpедных для окpужающей сpеды. Особенно опасными являются тяжелые металлы, под действием котоpых у человека могут возникать тяжелые заболевания неpвной системы, кpовеносных сосудов, сеpдца, печени. Кpоме того,
тяжелые металлы обладают мутагенным действием. Таким образом попадание неочищенных или плохо очищенных сточных вод и дpугих отходов, содеpжащих тяжелые металлы, в пpиpодную сpеду пpиводит к большому экологическому ущеpбу. Поэтому вопpосы эффективной очистки сточных вод в пpоцессах обpаботки металлов в настоящее вpемя весьма актуальны.

Прикрепленные файлы: 1 файл

Очистка сточных вод от ионов тяжелых металлов.doc

— 56.50 Кб (Скачать документ)

                   Очистка сточных вод от ионов тяжелых металлов

 

 
     Пpоизводства, связанные с химической и электpохимической обpаботкой металлов, являются одними из наиболее вpедных для окpужающей сpеды. Особенно опасными являются тяжелые металлы, под действием котоpых у человека могут возникать тяжелые заболевания неpвной системы, кpовеносных сосудов, сеpдца, печени. Кpоме того,

тяжелые металлы обладают мутагенным действием. Таким образом попадание неочищенных или плохо очищенных сточных вод и дpугих отходов, содеpжащих тяжелые металлы, в пpиpодную сpеду пpиводит к большому экологическому ущеpбу. Поэтому вопpосы эффективной очистки сточных вод в пpоцессах обpаботки металлов в настоящее вpемя весьма актуальны.    

 Металлообpабатывающие  заводы цветной металлуpгии потpебляют большое количество воды для pазличных технологических пpоцессов.

Ежегодно только пpи пpомывке изделий после гальванических и химических покpытий сточные воды этих заводов выносят, по оценке специалистов, не менее 3300т цинка, 2400т никеля, 460т меди, 500т хpома, 125т олова, 135т кадмия.    

 Для уменьшения экологической опасности этих производств pазpабатываются и находят пpименение pазличные способы извлечения металлов из пpомывных вод.    

 Очистка сточных вод  базируется на физико-химических и биологических пpоцессах. Необходимость значительных капитальных затpат на стpоительство очистных установок, экономическая эффективность котоpых в pяде случаев пpоявляется только пpи pассмотpении экологических задач в pегиональном или наpодно-хозяйственном масштабах, затрудняет расширение их использования. Сдеpживается внедpение совpеменных установок также и дефицитом некотоpых видов обоpудования, матеpиалов и химикатов. Поэтому главными задачами являются pазpаботка новых и овеpшенствование существующих способов очистки, позволяющих снизить капитальные затpаты на очистку  воды, оpганизация замкнутых систем водоснабжения пpомывных пpедпpиятий и шиpокое внедpение автоматизации и механизации, которые обеспечат уменьшение эксплуатационных расходов.    

 Глубокая очистка cточных  вод не только позволит улучшить  экологию окружающей среды, но  и явится источником получения ряда ценных металлов.     Целью настоящей pаботы является ознакомление с методами очистки сточных вод гальванических производств и способами извлечения ценных цветных металлов из отходов [1]. 

Для удаления ионов металлов из растворов традиционно используют такие методы, как реагентная обработка, ионный обмен и мембранные методы . Наиболее простыми, менее дорогостоящими, доступными и эффективными являются сорбционные методы очистки. В качестве дешевых сорбентов используются различные продукты растительного происхождения, например, щепа, лигнин, кора, целлюлоза, плодовые косточки, соевые шроты, шелуха, скорлупа, пустые стручки сельскохозяйственных культур, хитинсодержащие материалы, полученные при комплексной переработке сырья биогенного происхождения (криль, креветка, крабы и др.) [2]. 

 

Сорбенты для очистки сточных вод от ионов тяжелых металлов

1 Активированные угли

Активированные угли – наиболее широко используемые сорбенты, производимые миллионами тонн в год. Это универсальные сорбенты, применяемые для удаления примесей самой различной химической природы [3].

Активированный уголь широко применяется  для очистки от ионов металлов. Например, для очистки гальванических стоков от ионов тяжелых металлов эффективно использование сажистых бурых углей Канско-Ачинского бассейна. При исходных концентрациях ионов тяжелых металлов в (мг/л): медь – 38,5; никель – 0,37; железо – 87,5; хром трехвалентный – 9,6; хром шестивалентный – 2,1; – концентрации металлов в очищенной воде обнаруживаются в следовых количествах. Расход порошкообразного угля составляет 2 кг/м3 [4].

                                  Классификация активированных углей

Активированный уголь в зависимости от ряда характеристик можно разделить на несколько видов.

Во-первых, активные угли отличаются по своей пористой структуре, в зависимости от которой можно выделить следующие виды углей:

- микропористый  активированный уголь, у которого  самые мелкие поры, чей размер составляет менее 1,6 нм, что соизмеримо с размерами адсорбирующих молекул; микропоры являются превосходным адсорбентом для самых маленьких молекул;

- мезопористый  активированный уголь, поверхность  которого заполняется адсорбируемыми  молекулами послойно; размер мезопоры равняется 1,6- 200 нм.; активный уголь с такими порами подходит лучше всего для адсорбции более крупных органических молекул;

- макропористый  активный уголь, поры которого  являются самыми  крупными; особенность  макропор заключается в том, что они при адсорбции не заполняются, а доставляют молекулы к адсорбирующим порам: размер макропор составляет более 200 нм.

Во-вторых, активированный уголь подразделяется на классы, исходя из своей основы – углеродосодержащего сырья, в качестве которого может выступать:

- древесная основа (активированный уголь БАУ-А);10

- каменноугольная  основа (активированный уголь АГ-3);

- скорлупа кокосовых  орехов (активированный кокосовый  уголь).

В-третьих, активный уголь в зависимости от формы и размера своих частиц может быть:

- гранулированным, гранулы которого имеют форму  цилиндра:

- порошкообразным, размер частиц которых является  самым маленьким – менее 0,1 мм.;

- дробленым, частицы  которого неправильной формы [5].

 

Способы получения активированных углей

 

Известен способ получения активированного угля , включающий измельчение каменного угля до размеров частиц менее 0,5 мм и нагревание до 1000- 1200oC с последующей активацией при этой температуре в вихревой печи активирующим агентом, содержащим водяной пар. Недостатком данного способа являются низкая адсорбционная способность получаемого активированного угля (а.у.) по высокомолекулярным органическим соединениям в жидкой фазе, а также малый общий выход готового продукта (20-23%).

Известен способ получения гранулированного активированного угля с повышенной адсорбционной емкостью угля, по которому бурый уголь измельчают, гранулируют в присутствии воды, на гранулы накатывают слой бурого угля в присутствии 12,5 - 25% водного раствора сульфитно-спиртовой бражки, сушат, карбонизируют и активируют при 700- 750oC в течение 20-30 мин.

Недостаток данного способа - технологическая сложность в реализации способа в промышленном масштабе, высокая себестоимость готовой продукции.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ получения активного угля , выбранный за прототип и включающий карбонизацию измельченных углеродсодержащих отходов, подачу воды в карбонизованные отходы при расходе воды 0,4-0,8 м3/т отходов, активацию до 700-750oC. В результате получают активированный уголь с удельной поверхностью 190-210 м3/г, плотностью 1,5-1,9 г/см3, прочностью 35%.

К недостаткам данного способа можно отнести следующее: 
 
- значительное измельчение исходного сырья; 
 
- периодичность процесса; 
 
- нетехнологичность способа, включающего раздельные стадии карбонизации, обработки водой и активации, проводимые последовательно в одном и том же аппарате; 
 
- низкие эксплуатационные показатели получаемого сорбента.

Задача предлагаемого изобретения - вовлечение в производство активированных углей дешевого природного углеродсодержащего сырья, например бурого угля, и повышение адсорбционных свойств и прочности получаемого продукта при использовании в технологическом процессе типовых нагревательных аппаратов, например шахтных печей полукоксования.

Поставленная задача достигается тем, что в способе получения активированного угля из углеродсодержащего сырья, включающем дробление, классификацию, карбонизацию, обработку водой и активацию, углеродсодержащее сырье, например бурые угли, фракции +8-80 мм направляют на карбонизацию при температуре 600-950oC, охлаждают до 250-350oC и обрабатывают водой, причем обработку водой ведут до полного насыщения карбонизата, подготовленный таким образом карбонизат направляют на активацию парогазовой смесью при температуре 750-900oC с получением активата, при этом перед карбонизацией углеродсодержащее сырье нагревают до температуры на 5-10oC ниже температуры начала отгона летучих углеводородных веществ и карбонизацию осуществляют со скоростью нагрева 2-10oC/мин в токе инертного газового теплоносителя при его расходе 0,3-0,5 м3/кг сырья, а активацию карбонизата парогазовой смесью с расходом пара 3-10 г/г ведут в течение 1-4 ч до обгара 30-60% [6].

           Угли, отличающиеся высокой механической прочность и адсорбционной способностью, получают из скорлупы кокосовых орехов. Упрощённо процесс производства активного угля можно свести к двум стадиям: карбонизация и активация. На первой стадии производства активного угля исходный  материал подвергается  термической обработке без доступа кислорода, в результате которой из него удаляются летучие (влага и частично смолы), он уплотняется, приобретает  прочность. Структура полученного материала крупнопористая, обладающая незначительной внутренней поверхностью, вследствие чего он не может быть использован как промышленный адсорбент.  Задача получения развитой микропористой структуры решается на стадии активации. Активация проводится двумя способами: окисление газом или паром и обработка химическими реагентами. Для активирования газами используются кислород (воздух), водяной пар и  диоксид углерода. 

Активация воздухом на практике применяется редко, из-за возможности внешнего обгара гранул, поэтому в производстве чаще применяется активация водяным паром и диоксидом углерода. Для обеспечения высокой скорости и полноты протекания реакция процесс активации проводят при температуре от 800 до 1000 0С с использованием специального оборудования. В результате такой обработки в угле образуются многочисленные поры, и увеличивается удельная поверхность пор на единицу массы. Исходным сырьём для парогазовой активации служат карбонизованные природные материалы: уголь из скорлупы кокосового ореха, каменный и древесный уголь, торфяной кокс. При химической активации применяют такое сырьё, как: древесные опилки, торф. Смесь последних  с неорганическими солями (хлорид цинка, сульфид калия), реже кислотами (фосфорная, серная кислоты), подвергается высокотемпературной обработке. Под воздействием дегидрирующих агентов и высоких температур (порядка 650 0С) из углеродсодержащего материала удаляются кислород и водород, и одновременно происходят карбонизация и активация. К недостаткам химической активации следует отнести загрязнение продукта активирующим агентом, а также загрязнение окружающей среды отходами производства [7].

 

Использовании угольного сорбента за счет увеличения эффективности сорбции и емкости сорбента позволяет повысить степень очистки сточных вод от тяжелых металлов .

Сущность изобретения заключается в том, что для очистки сточных вод от тяжелых металлов в качестве сорбента используют центрифугат микробной переработки углей. Сорбция тяжелых металлов осуществляется частицами углей и иммобилизованными на них микроорганизмами. Переработка углей в сорбент проводится с помощью этих же микроорганизмов, а их иммобилизация осуществляется одновременно с переработкой. В качестве сырья для производства сорбента используют бурые рядовые и некондиционные окисленные угли, а также окисленные каменные угли. Увеличение эффективности сорбции и емкости сорбента достигается за счет улучшения сорбционных свойств углей при их микробной переработке и участия микроорганизмов в сорбции металлов.

Способ осуществляют следующим образом.

В отстойник со сточной водой вносят сорбент в количестве 100-250 г на 1 г растворенного в воде металла. Перемешивание полученной суспензии происходит при совместной ее подаче и с помощью воздуха, подаваемого в отстойник из компрессора в течение 15-20 мин. Продолжительность отстаивания определяют по прозрачности надосадочной жидкости, которую сравнивают со стандартом на фотоэлектроколориметре. После отстаивания очищенную надосадочную жидкость сливают, а оставшийся сорбент регенерируют или сжигают.

Получение сорбента проводят следующим образом.

Окисленный бурый уголь Бородинского месторождения, имеющий следующие характеристики, Ad 10,6, Vdat 51,2, Cdat= 58,8, Hdat 4,2, Ndat 1,1, Sd 0,2, Wr32,5, измельчают на мельнице до размера 0-300 мкм и загружают в реактор в количестве 400-470 г (в пересчете на сухой вес) на 1 л воды. Добавляют фосфоритовой муки из расчета 1 г на сухой 50 г угля. Содержимое реактора перемешивают с помощью механической мешалки в течение часа, затем гашеной известью доводят рН пульпы до 7. В качестве инокулята используют смесь микробных культур Acinetobacter coa leoauticus, Pseudomonas denitrificaus, Pseudomonas Londa в соотношении по весу 1:1:1. В реактор добавляют инокулят из расчета 1 г инокулята на 1 кг угля (в пересчете на сухой вес). В последующих циклах наработки сорбента в качестве инокулята используют остаток угольной пульпы от предыдущего цикла в количестве 1/5 от рабочего объема реактора.

В полученном продукте определяют содержание активных карбоксильных групп, емкость катионного обмена и содержание микроорганизмов. Необходимое время для получения продукта в реакторе составляет 21-28 ч. Полученный продукт центрифугируют и осадок высушивают при 60оС до постоянного веса. Полученный сорбент представляет собой порошок черного цвета и характеризуется следующими показателями: содержание активных карбоксильных групп не менее 3 мг/экв/г, емкость катионного обмена 103-148 мг-экв/100 г, содержание микроорганизмов 5,5-10,4 млрд/г [8].

 

 

 


Информация о работе Очистка сточных вод от ионов тяжелых металлов