Автор работы: Пользователь скрыл имя, 23 Октября 2014 в 07:05, реферат
Ядами называются неорганические или органические химические вещества, способные при воздействии на живые организмы вызывать резкое нарушение нормальной жизнедеятельности, то есть отравление или смерть. Понятие о ядах относительное. Сила и характер воздействия химических веществ на организм зависят не только от химических и физико-химических свойств веществ, но и от особенностей живого организма.
Введение…………………………………………………………………………..3
1. Основные яды растительного происхождения………………………………5
2. Фосген, дифосген. Молекулярное строение, физико-химические свойства,
применение, механизм действия, клиника, лечение при поражении…………9
3. Химический мониторинг окружающей среды. Цели, задачи, методы……15
4. Виды медицинской помощи, оказываемые пострадавшим в очагах поражения при ведении спасательных работ………………………………….18
Заключение……………………………………………………………………….37
Список использованной литературы…………………………………………..38
Некоторые возможные способы утилизации отходов бурения и нефтедобычи
Шорникова Е.А.
Характеристика отходов бурения
На современном этапе развития технологии нефтедобычи при эксплуатации нефтяных месторождений образуются большие объемы отходов, преимущественное количество которых накапливается в шламовых амбарах. На нефтедобывающих предприятиях Среднего Приобья, в соответствии с регламентами, для сбора отходов бурения с одной кустовой площадки при бурении восьми скважин строится один амбар. Если количество скважин в кусте более десяти, - строится несколько амбаров [1].
В процессе эксплуатации амбары заполняются буровыми и тампонажными растворами, буровыми сточными водами и шламом, пластовыми водами, продуктами испытания скважин, материалами для приготовления и химической обработки буровых и тампонажных растворов, ГСМ, хозяйственно-бытовыми сточными водами и твердыми бытовыми отходами, ливневыми сточными водами. Процентное соотношение между этими компонентами может быть самое разнообразное в зависимости от геологических условий, технического состояния оборудования, культуры производства и т.д. [1]. Так, по данным ОАО "Когалымнефтегаз", при бурении скважины глубиной 2600 м в амбаре содержится около 65% воды, 30% шлама (выбуренной породы), 5,5% нефти, 0,5% бентонита и 0,5% различных присадок, обеспечивающих оптимальную работу буровой установки (табл. 1).
Таблица 1
Состав отходов нефтедобычи на месторождениях ОАО "Когалымнефтегаз" [2]
Компоненты отходов |
Состав при бурении первой скважины (2600 м), т |
Состав при бурении последующих скважин, т |
Вода |
314.0 |
314.0 |
Шлам |
150.0 |
150.0 |
Нефть |
29.64 |
26.64 |
Бентонит |
2.8 |
1.4 |
ПАВ-неонол |
0.073 |
0.073 |
КМЦ |
0.364 |
0.182 |
ТПФН |
0.052 |
0.052 |
ГКЖ |
0.080 |
0.080 |
Сода кальцинированная |
0.042 |
0.042 |
Сода каустическая |
0.150 |
0.150 |
КССБ |
0.161 |
0.161 |
Графит |
0.150 |
0.150 |
Барит |
0.096 |
0.096 |
Цемент |
0.722 |
0.722 |
Гипан |
0.172 |
0.086 |
НТФ |
0.045 |
0.045 |
«Нитрон» – отходы |
0.170 |
0.170 |
Смазочная добавка ИКБ-4ТМ |
0.520 |
0.520 |
По данным химического анализа амбарных шламов ОАО "Когалымнефтегаз" [2], содержание нефтепродуктов в шламе колеблется в пределах от 2000 до 13870 мг/кг. Нефтяная часть шлама представлена в основном парафино-нафтеновыми углеводородами - 41,8% масс., из них 20% масс. - твердые парафины [3]. Асфальтены - 5,6% масс.; смолы - 19,2% масс., полициклические ароматические углеводороды - 20,1 % масс. В образцах асфальто-смолистых парафиновых отложений, отобранных из амбаров нефтепромыслов Западной Сибири, содержание парафино-церезиновых компонентов с температурами плавления 66-84 оС составляет 40-70% масс.; содержание органической части - 72-90% масс. [4,5]. Нефтяная часть отходов распределяется в шламовом амбаре следующим образом: 7-10% нефтеуглеводородов сорбируется на шламе, 5-10% находится в эмульгированном и растворенном состоянии, остальные углеводороды находятся на поверхности амбара в виде пленки [6].
Неорганическую часть составляют в основном окислы кремния и железа (песок, продукты коррозии), небольшие количества (менее 1%) соединений алюминия, натрия, цинка и других металлов [7].
Строительство амбаров практически заключается в выемке определенного объема грунта и обваловании полученного котлована. Гидроизоляция дна и стенок амбара не производится [1]. При такой конструкции избежать фильтрации жидкой фазы и попадания ее на окружающий ландшафт практически невозможно.
Наиболее распространенный способ ликвидации шламовых амбаров выглядит следующим образом. Амбары освобождают от жидкой фазы, которую направляют в систему сбора и подготовки нефти с последующим использованием ее в системе поддержания пластового давления. Оставшийся шлам засыпают минеральным грунтом [1]. Описанный способ ликвидации шламовых амбаров имеет ряд серьезных недостатков, одним из которых является содержание в буровом шламе достаточно высоких концентраций нефтеуглеводородов, тяжелых металлов в подвижной форме, АПАВ и других токсичных веществ. Поэтому необходимость ликвидации шламовых амбаров с последующим обезвреживанием и утилизацией бурового шлама очевидна.
Пути решения проблемы
В последние годы нефтедобывающими предприятиями в производство внедряются различные технологические решения, направленные на утилизацию отходов бурения. Однако, унифицированного способа переработки нефтешламов с целью обезвреживания и утилизации не существует.
Все известные технологии переработки нефтешламов по методам переработки можно разделить на следующие группы:
- термические - сжигание в открытых
амбарах, печах различных типов,
получение битуминозных
- физические - захоронение в специальных могильниках, разделение в центробежном поле, вакуумное фильтрование и фильтрование под давлением;
- химические - экстрагирование с помощью растворителей, отвердение с применением (цемент, жидкое стекло, глина) и органических (эпоксидные и полистирольные смолы, полиуретаны и др.) добавок;
- физико-химические - применение специально
подобранных реагентов, изменяющих
физико-химические свойства, с последующей
обработкой на специальном
- биологические - микробиологическое
разложение в почве непо-
Среди существующих методов разделения нефтешламов с целью утилизации - центрифугирования, экстракции, гравитационного уплотнения, вакуумфильтрации, фильтрпрессования, замораживания и др. [8] - наиболее перспективным является центрифугирование с использованием флокулянтов [9]. Центрифугированием можно достичь эффекта извлечения нефтепродуктов на 85%, мехпримесей - на 95%. При реагентной обработке нефтешламов изменяются их свойства: повышается водоотдача, облегчается выделение нефтепродуктов.
В качестве наиболее прогрессивных можно перечислить некоторые технологии ликвидации шламовых амбаров и утилизации буровых шламов, применяемые в России и за рубежом.
Компанией АСS 530 (США) разработана мобильная система обработки и очистки гряземаслонефтяных отходов МТU 530. Установка смонтирована на базе автомобильной платформы, способна разделять нефтешламы на различные фазы - нефть, вода, твердые вещества - за счет центрифугирования нагретого нефтешлама. Вода пригодна для последующей биологической очистки; отделенная нефть может быть использована в технических целях; обезвоженный осадок - для производства строительных материалов. Установка применялась в России для устранения последствий аварии нефтепровода в Республике Коми. Производительность установки - 10 м3/ч по исходному нефтешламу (при концентрации нефти до 65%)[7].
Компанией KHD Humboldt Wedag AG (Германия) предложена технология разделения нефтешламов на фазы с последующим сжиганием шлама. Установка снабжена устройством для забора нефтешлама, виброситом для отделения основной массы твердых частиц, трехфазной центрифугой, сепаратором для доочистки фугата с центрифуги, печью. Производительность установки - до 15 м3/ч по исходному нефтешламу [7].
В АНК "Башнефть" на нефтешламовых амбарах "Самсык" в НГДУ "Октябрьскнефть" применялась технология, заключающаяся в растворении, нагреве с обработкой химическими реагентами для отделения отстоем воды и механических примесей. Полученная нефть направлялась на дальнейшую переработку [7].
В НГДУ "Туймазынефть" с 1995 г. внедрена и успешно используется установка фирмы "Татойлгаз", основанная на технологии фирмы "Майкен" (Германия). Технология заключается в нагреве нефтешлама, обработке деэмульгаторами, разрушении эмульсии в декантаторе с предварительным отделением воды и механических примесей. Доведение до требуемого качества товарной нефти осуществляется на второй стадии - в испарителе и трехфазном сепараторе [7].
Некоторые технологические решения по ликвидации нефтешламов
Процесс ликвидации амбара с последующей утилизацией бурового шлама можно условно разделить на следующие технологические стадии:
- сбор нефтяной пленки с
- очистка жидкой фазы от
- доочистка жидкой фазы (степень
очистки зависит от
- обезвоживание и
- утилизация бурового шлама;
- очистка нефтезагрязненного
Таким образом, весь технологический процесс ликвидации шламового амбара проводится в два этапа:
1) очистка и обезвреживание
2) собственно утилизация
Первый этап должен проводиться с учетом особенностей состава отходов, находящихся в шламовом амбаре.
А. Очистка амбаров с высоким содержанием нефти на поверхности
Предварительный сбор пленки с поверхности амбарной жидкости (установки типа УСН-2, УСН-300, СМ-5; см. табл. 2).
Таблица 2
Технические характеристики установок [6]
Наименование показателя |
УСН-2 |
УСН-300 |
СМ-5 |
Производительность по нефтепродуктам, м3/час |
0.2 |
3.0 |
5.0 |
Минимальная допустимая толщина слоя нефтепродуктов, мм |
0.01 |
0.1 |
1.0 |
Эффективность сбора нефтепродуктов, % |
99.5 |
99.5 |
90.0 |
Содержание воды в собранных нефтепродуктах, % |
2 |
5 |
2–10 |
Добавка растворов органических флокулянтов ФТ-410, ПТ-506, неорганических флокулирующих сорбентов СФ-А1 с последующим перемешиванием и отстаиванием в течение 1-2 суток. В процессе отстаивания происходит разрушение эмульсии; повторный сбор нефтепродуктов с поверхности амбара. Оставшаяся вода с небольшим содержанием нефтепродуктов прокачивается через установку НЗУ-100 - горизонтальный отстойник для задерживания основной массы нефтепродуктов и взвешенных веществ и камера из двухступенчатых безнапорных фильтров с загрузкой сорбентом (ГС; емкость поглощения 6-8 г нефтепродуктов на 1 г сорбента, степень очистки воды - 95-99%) [6]. Перспективно применение ультрадисперсных порошкообразных сорбентов на основе оксидно-гидроксидных фаз алюминия (УДП) [10]. Адсорбент обеспечивает быструю коагуляцию нефтяной микроэмульсии в достаточно крупные фрагменты. Вода после очистки может быть использована в технических целях либо сбрасываться в водные объекты. После удаления сточных вод шлам готовят для очистки от нефтяных углеводородов.
Б. Очистка амбаров с большим содержанием эмульгированных и отсутствием пленочных нефтеуглеводородов
Жидкая фаза амбарных отходов с высоким содержанием эмуль-гированных нефтепродуктов (более 0,5 г/л) пропускается через установку типа УСФ-0.5 (табл. 3). Технология основана на использовании процессов седиментации и флотации из водных растворов органических реагентов. В качестве деэмульгатора и флокулянта реагентов ПТ-506 и ФСт-407. При обработке эмульсии не требуется ее подогрев или изменение рН раствора. Установка включает в себя: насос, смеситель, бак - отстойник, флотатор, диспергирующее и дозирующее устройства, емкости для реагентов [6].
Таблица 3
Технические характеристики установки
Производительность |
200–500 л/час |
Количество нефтепродуктов в исходной эмульсии |
1–20 г/л |
Количество нефтепродуктов в жидкой фазе после очистки |
0.002–0.1 г/л |
Дозы реагентов |
0.2–1 г/л |
Степень очистки |
98–99 % |
Отделенные нефтеуглеводороды собираются в емкость и могут быть использованы в качестве топлива. Водная фаза доочищается в установке типа НЗУ-100 и может использоваться в технических целях, либо сбрасываться в водоем. Оставшийся шлам готовят для очистки от нефтеуглеводородов.
Обезвреживание бурового шлама
Информация о работе Некоторые возможные способы утилизации отходов бурения и нефтедобычи