Методы очистки сточных вод

Автор работы: Пользователь скрыл имя, 11 Декабря 2013 в 20:43, реферат

Краткое описание

Основным видом отходов гальванического производства являются промывные воды, содержащие в большом количестве ионы тяжелых металлов. Для снижения количества тяжелых металлов в сточных водах до предельно допустимых концентраций (ПДК) необходимо использовать замкнутую систему водоснабжения, то есть промывные воды, подвергшиеся очистке от примесей, возвращать в технологический процесс, а извлеченные примеси – на захоронение или переработку. Таким образом очистка сточных вод является одной из самых актуальных проблем.

Содержание

Введение 3
1. Методы очистки сточных вод 4
1.1. Гидромеханические методы очистки сточных вод 5
1.2. Химические методы 14
1.3. Физико-химические методы 20
1.4. Электрохимические методы 27
1.5. Биохимические методы 30
Заключение 34
Список литературы 35

Прикрепленные файлы: 1 файл

Методы очистки сточных вод.doc

— 416.00 Кб (Скачать документ)

3) электрофлотация.

Электрофлотационные аппараты выпускаются двух типов: безреагентный  электрохимический модуль очистки и электрохимический модуль глубокой доочистки сточных вод. [25]

Безреагентный электрохимический модуль предназначен для очистки сточных вод от ионов тяжелых цветных металлов.

Работа модуля основана на процессах образования  дисперсной фазы нерастворимых соединений (главным образом гидроксиды) тяжелых металлов и их электрофлотации.

Использование модуля позволяет от реагентного  хозяйства, включающего реакторы, отстойники, фильтры. Модуль легко сочетается с любым другим очистным оборудованием.

Электрохимический модуль глубокой доочистки предназначен для глубокой доочистки сточных вод (после реагентного, электрокоагуляционного и других методов предварительной очистки сточных вод гальванических производств) от ионов меди, никеля, цинка, кадмия, хрома, железа, алюминия и других при любом соотношении компонентов в присутствии различных анионитов.

Работа модуля основана на электрофлотационном извлечении малорастворимых соединений тяжелых цветных металлов в основном в виде фосфатов индивидуально или в смеси при рН=7-10 за счет их флотации пузырьками водорода и кислорода.

Схема использования обоих  модулей позволяет очистить сточную  воду до ПДК.

Достоинствами электрофлотации  является непрерывность процесса, широкий диапазон применения, небольшие капитальные и эксплуатационные затраты, простая аппаратура, селективность выделения примесей, большая скорость процесса по сравнению с отстаиванием, а также возможность получения шлама более низкой влажности (90-95%), высокая степень очистки (95-99%), возможность рекуперации выделяемых веществ [26].

 

                                                  1.5. Биохимические методы  
 

Метод биохимической очистки сточных вод активным илом заключается в переработке скоплениями аэробных микроорганизмов органических загрязнений при их частичной или полной минерализации, в присутствии кислорода, подаваемого в аэротэнк, и последующим разделением прореагировавшей смеси. Условно, принято разделять весь процесс очистки на два периода: период биологического созревания и период стационарного биохимического окисления. В период биологического созревания в аэробных условиях с активным илом развивается оптимальное количество активного ила, адаптированного применительно к этому режиму работы установки, количеству и качеству сточной воды. В период стационарного процесса работы очистных установок с аэрацией, обычно, различают четыре фазы работы активного ила. 

Первая фаза: Биосорбция органического вещества хлопьями активного ила. 

Происходит интенсивный прирост биомассы активного ила и резкое снижение концентрации органических загрязнений за счет биосорбции органических загрязнений активным илом. Продолжительность фазы биосорбции не превышает 30 минут. 

Вторая фаза: Биохимическое окисление органических веществ хлопьями активного ила.

 

 

Происходит дальнейший прирост биомассы активного ила и снижение концентрации органических загрязнений за счет декарбонизации. Продолжительность фазы биохимического окисления около одного часа. 

Рассмотрим процессы протекающие в фазе био-химического окисления подробнее. Как известно, биохимическую очистку сточных вод осуществляют главным образом микробы. Микробы не имеют специальных органов пищеварения, поэтому все необходимые для их жизнедеятельности вещества попадают в клетку через мельчайшие поры клеточной оболочки (мембраны). Эти поры настолько малы что для проникновения через них вещества должны быть предварительно подготовлены, т.е. предварительно размельчены до молекулярного состояния и частично превращены в более простые соединения в окружающем их растворе. Для этого в процессе эволюции у микроорганизмов выработалась способность выделять в окружающую среду гидролитические экзоферменты (эктоферменты), которые и подготавливают содержащиеся в ней сложные вещества к усвоению микробной клеткой. 

Другая группа ферментов, называемая эндоферменты, в отличие экзоферментов, действует внутри микробной клетки. Эндоферменты способствуют усвоению питательных веществ клеткой. Как только питательные вещества попадают в клетку, эндоферменты сразу же перерабатывают их в вещество протоплазмы клетки. Каждый из вырабатываемых ферментов имеет свою цель. Одни из них действуют на белки, вторые на жиры, третьи на углеводы. Вся совокупность биохимических процессов, протекающих при очистке сточных вод, очень сложна, однако схематически их можно представить следующим образом.  Углеводы в аэробных условиях подвергаются изменениям, которые показаны на рисунке в тексте. Кроме того незначительная часть моносахаридов идет для синтеза гликогена в микробных клетках, хотя большая часть в процессе эндогенного дыхания микробной клетки окисляется (попросту сгорает). Весь процесс окисления углеродсодержащих веществ в аэробных условиях носит название декарбонизации сточных вод. 

Третья фаза: Синтез клеточного вещества активного ила из оставшихся органических веществ сточной воды за счет энергии, освободившейся во второй фазе.

Количество органического субстрата, переходящего в новые клетки, составляет приблизительно 65%. Эта фаза отличается от предыдущих относительным постоянством массы активного ила, она протекает до тех пор, пока не будет исчерпано все органическое вещество, предварительно накопленное клеткой микроорганизмов ила. Суммарная продолжительность этой фазы в аэротенке и регенераторе составляет в стационарном процессе около 20 часов.  

Одним из органогенов, элементом необходимым для развития любого микроорганизма, является азот. В связи с этим на практике огромное значение имеет биохимический распад белков. 

Распад белка в аэробных условиях можно представить следующим образом. Белковые молекулы под влиянием ферментов, выделяемых микроорганизмами, расщепляются на ряд более простых веществ. Этот распад происходит через альбумозы и пептоны до аминокислот. Часть аминокислот используется как строительный материал размножающимися микроорганизмами активного ила, а часть подвергается дезаминированию с образованием аммиака, воды и СО„. В аэробных условиях образующийся аммиак растворяется в воде, образуя гидрат окиси аммония, который, в свою очередь, связывается с углекислотой, образуя углекислый аммоний.  

Однако стоит отметить, что большая часть аминокислот, образовавшихся из белков сточных вод при их расщеплении, используется как строительный и энергетический материал для биосинтеза клеток микроорганизмов активного ила.   

Четвертая фаза: Эндогенное дыхание или окисление клеточного вещества активного ила.

 

 

 Эта фаза характеризуется уменьшением биомассы активного ила. Органические вещества клеток биомассы подвергаются подвергается эндогенному окислению до конечных продуктов NH3, С02, Н20, что приводит к уменьшению общей массы ила. Эта фаза начинается после 20-24 часов аэрации активного ила и заканчивается через 2-3 суток. 

Из азота, использованного как строительный материал для синтеза активного ила, при биохимическом окислении, образуется, в конечном счете, углекислый аммоний. Этот процесс наглядно отображен на рисунке. 

Следует особо отметить, что жиры мало и медленно подвергаются биохимическим процессам разложения, и их биохимическое окисление происходит именно в этой фазе. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        ЗАКЛЮЧЕНИЕ

 

В реках и  других водоемах происходит естественный процесс самоочищения воды. Однако он протекает медленно. Пока промышленно- бытовые сбросы были невелики, реки сами справлялись с ними. В наш индустриальный век в связи с резким увеличением отходов водоемы уже не справляются со столь значительным загрязнением. Возникла необходимость обезвреживать, очищать сточные воды и утилизировать их.

Очистка сточных  вод - обработка сточных вод с целью разрушения или удаления из них вредных веществ. Освобождение сточных вод от загрязнения - сложное производство. В нем, как и в любом другом производстве имеется сырье (сточные воды) и готовая продукция (очищенная вода)

Методы очистки сточных вод можно разделить на механические, химические, физико-химические и биологические и термические, когда же они применяются вместе, то метод очистки и обезвреживания сточных вод называется комбинированным. Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примесей.

Практическое  применение находят способы электрохимической  очистки стоков, содержащие стоки металлов, кислот и щелочей, которые позволяют одновременно с очисткой извлекать и использовать основную массу ценных продуктов.

 

 

 

 

 

 

 

 

 

 

 

                                                            Литература

 

1. Правила охраны поверхностных  вод (Основные положения). М., 1991.

2. Закон РФ «Об охране  окружающей природной среды».

3. Решение  конференции  «Проблемы нормативно-правового  обеспечения внедрения современных систем экологического управления на предприятиях» Совет Федерации Федерального Собрания Российской Федерации; 29 января 2004 года (По материалам ИНТЕРНЕТ).Н.В.Пахомова, К.К.Рихтер. Экономика природопользования и экологический менеджмент: Учебник вузов. — СПб.: Издательство С.-Петербургского ун-та, 1999.— 488 с. 


Информация о работе Методы очистки сточных вод