Автор работы: Пользователь скрыл имя, 22 Мая 2013 в 16:42, контрольная работа
Экология (от греч. oikos – дом, жилище, logos – знание, учение) – это наука, изучающая условия существования живых организмов и взаимосвязи между организмами и средой, в которой они обитают. Термин «экология» предложил немецкий биолог Эрнест Геккель в 1866 г. Под экологией он понимал сумму знаний, относящихся к природе.Поскольку биосфера - часть геологической оболочки Земли, заселенная живыми организмами, ее границы определяются условиями существования жизни, такими, как достаточное количество воды, минеральных веществ, кислорода, углекислого газа, благоприятный температурный режим, степень солености воды в водоемах, уровень радиации и др.
Балтийская государственная академия
рыбопромыслового флота
Экология
Реферат на тему номер 1
Выполнил: студент гр.
12Мз641
Иванов Виталий.
1.
Экология (от греч. oikos – дом, жилище, logos – знание, учение) – это наука, изучающая условия существования живых организмов и взаимосвязи между организмами и средой, в которой они обитают. Термин «экология» предложил немецкий биолог Эрнест Геккель в 1866 г. Под экологией он понимал сумму знаний, относящихся к природе.
2,
Поскольку биосфера - часть геологической оболочки Земли, заселенная живыми организмами, ее границы определяются условиями существования жизни, такими, как достаточное количество воды, минеральных веществ, кислорода, углекислого газа, благоприятный температурный режим, степень солености воды в водоемах, уровень радиации и др.
Верхняя граница биосферы очерчивается озоновым слоем, который своеобразным экраном защищает все живое от губительного воздействия ультрафиолетовой радиации. Нижняя граница очень изрезана: биосфера включает гидросферу суши и Мировой океан, на материках проникает в земную кору в среднем на 3-4 км. Поэтому можно сказать, что биосфера - это часть литосферы, атмосферы и гидросферы, заселенная живым веществом.
Биосфера существовала на протяжении практически всей геологической истории, поэтому нижняя граница биосферы сопрягается с областью "былых биосфер" - так В.И. Вернадский назвал сохранившиеся остатки биосфер прошлых геологических периодов (накопления известняков, углей, горючих сланцев, осадочных пород).
3.
Биогеоценóз , природная система, которая состоит из живых организмов, образующих биоценоз , и совокупности косных, или абиотических (неживых), компонентов среды их обитания; все составные части связаны между собой обменом веществ и энергии.
К косным компонентам относятся рельеф, приземный слой атмосферы с её газовыми, водными и тепловыми ресурсами, солнечная энергия, почва с её водоминеральными ресурсами, кора выветривания (в случае водного биогеоценоза – вода).
Структурной основой биогеоценозов суши является фитоценоз – сообщество растений. Они ведут неподвижный образ жизни и определяют вертикальное (ярусность) и горизонтальное (микрогруппировки) членение биогеоценоза; являются единственным автотрофным (способным накапливать солнечную энергию путём синтеза органических веществ из неорганических) компонентом, производят осн. часть биомассы . Ярусность – вертикальное расслоение на структурные части разной высоты. Она способствует увеличению числа организмов на единицу площади, ослаблению конкуренции, более полному использованию условий среды. Неоднородность микрорельефа, средообразующее влияние растений и их биологические особенности приводят к формированию микрогруппировок.
4.
Несмотря на громадное разнообразие экосистем - от тропических лесов до пустынь, леса, болота, озера, по мнению экологов им свойственна одинаковая биотическая структура. Все экосистемы включают одни и те же основные категории организмов, взаимодействующих друг с другом, стереотипным образом. Это следующие категории: зелёные растения, консументы, детритофаги.
(1) Зелёные растения
Это в основном зеленые растения (одноклеточные водоросли, травы, деревья, и т.д.).
Фотосинтез - это химическая реакция, протекающая при участии хлорофилла клетки зеленых растений за счет солнечной энергии. СO2 из воздуха, Н2O из почвы и солнечная энергия - получается глюкоза ( простейший из Сахаров) и О . Фотосинтез идет в каждой клетке зеленых листьев.
6СO2+6 Н2O + Q= C6H12O6+6O6
O2 выделяется в атмосферу. Из глюкозы и минеральных элементов из почвы растения синтезируют сложные вещества, входящие в состав организма (белки, жиры, углеводы, ДНК и т.д.).
Таким образом растения продуцируют сложные органические соединения из простых неорганических (СO , Н О). При этом солнечная энергия накапливается в органических соединениях наряду с химическими элементами.
(2) Консументы
Животные питаются органическими веществом, используя его как источник энергии и материал для формирования своего тела. Т.е. зелёные растения продуцируют пищу для других организмов экосистемы. К консументам относятся рыбы, птицы, млекопитающие и человек.
Животные, питающиеся непосредственно растениями, называются первичными консументами (растительноядные). Их самих употребляют в пищу вторичные консументы (хищники). Бывают консументы третьего, четвёртого и более высоких порядков. Заяц ест морковь - первичный консумент, лиса, съевшая зайца - вторичный консумент. Человек - ест овощи - первичный консумент, а мясо - вторичный, хищную рыбу (щуку) - третьего порядка. Т.е. организм может соответствовать различным и называется - всеядный.
(3) Детритофаги
Это организмы, которые питаются мёртвыми растительными и животными остатками (опавшие листья, фекали, мёртвые животные - это называется детрит).
Это грифы, гиены, черви, раки, термиты, муравьи, грибы, бактерии и т.д. Их главная роль - питаясь мёртвой органикой детритофаги разлагают её. Отмирая, сами становятся частью детрита.
Некоторые организмы не укладываются в эту схему. Например: насекомоядные растения. Они улавливают насекомых, частично переваривают их с помощью ферментов и органических кислот, в результате чего восполняют недостаток азота и других питательных веществ. В России - 20 видов (венерика мухоловка, саррацения, росянка). Обитают в местах с недостатком N, Р, К (болота - очень бедны питательными веществами).
5.
МЕТАБОЛИЗМ
или обмен веществ, химические превращения, протекающие от момента поступления питательных веществ в живой организм до момента, когда конечные продукты этих превращений выделяются во внешнюю среду. К метаболизму относятся все реакции, в результате которых строятся структурные элементы клеток и тканей, и процессы, в которых из содержащихся в клетках веществ извлекается энергия. Иногда для удобства рассматривают по отдельности две стороны метаболизма - анаболизм и катаболизм, т.е. процессы созидания органических веществ и процессы их разрушения. Анаболические процессы обычно связаны с затратой энергии и приводят к образованию сложных молекул из более простых, катаболические же сопровождаются высвобождением энергии и заканчиваются образованием таких конечных продуктов (отходов) метаболизма, как мочевина, диоксид углерода, аммиак и вода. Термин "обмен веществ" вошел в повседневную жизнь с тех пор, как врачи стали связывать избыточный или недостаточный вес, чрезмерную нервозность или, наоборот, вялость больного с повышенным или пониженным обменом. Для суждения об интенсивности метаболизма ставят тест на "основной обмен". Основной обмен - это показатель способности организма вырабатывать энергию. Тест проводят натощак в состоянии покоя; измеряют поглощение кислорода (О2) и выделение диоксида углерода (СО2). Сопоставляя эти величины, определяют, насколько полно организм использует ("сжигает") питательные вещества. На интенсивность метаболизма влияют гормоны щитовидной железы, поэтому врачи при диагностике заболеваний, связанных с нарушениями обмена, в последнее время все чаще измеряют уровень этих гормонов в крови.
ФОТОСИНТЕЗ (от др.-греч. φῶς — свет и σύνθεσις — соединение, складывание, связывание, синтез) — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.
ГОМЕОСТАЗ (др.-греч. ὁμοιοστάσις от ὁμοιος — одинаковый, подобный и στάσις — стояние, неподвижность) — саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия. Стремление системы воспроизводить себя, восстанавливать утраченное равновесие, преодолевать сопротивление внешней среды.
СУКЦЕССИЯ (от лат. succesio — преемственность, наследование) — последовательная необратимая и закономерная смена одного биоценоза (фитоценоза, микробного сообщества и т.д.) другим на определённом участке среды во времени.
6.
Закон конкурентного исключения. Два вида, занимающие одну экологическую нишу, не могут сосуществовать в одном месте бесконечно долго.
Закон биогенной миграции атомов (закон В. И. Вернадского). Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется под преобладающим влиянием живого вещества, организмов.
Закон внутреннего динамического равновесия. Вещество, энергия, информация и динамические качества отдельных природных систем находятся в тесной взаимосвязи. Изменение одного из показателей неминуемо приводит к функционально-структурных изменений других при сохранении общих качеств системы — вещественно-энергетических, информационных и динамических.
Закон генетического разнообразия. Все живое генетически разное и имеет тенденцию к увеличению биологической разнородности.
Закон исторической необратимости. Общий процесс развития биосферы и человечества однонаправленный.
Закон константности (сформулированный В. И. Вернадским). Количество живого вещества биосферы, образованной за определенный геологическое время, является постоянной величиной.
Закон корреляции (сформулированный Ж. Кювье). В организме как целостной системе все части соответствуют друг другу как по строению, так и по функциям.
Закон максимизации энергии (сформулированный Г. и Ю. Одум и дополнен М. Реймерсом). В конкуренции с другими системами сохраняется та из них, наиболее способствует поступлению энергии и информации и использует максимальную их количество эффективно.
Закон максимума биогенной энергии (закон Вернадского-Бауэра). Любая биологическая и бионедоскональная система, находящаяся в состоянии устойчивости неравновесия (динамически подвижного равновесия с окружающей средой), увеличивает, развиваясь, свое влияние на среду.
Закон ограниченности природных ресурсов. Все природные ресурсы в условиях Земли исчерпывающие.
Закон однонаправленности потока энергии. Энергия, которую получает экосистема и которая усваивается продуцентами, рассеивается или вместе с их биомассой необратимо передается консументам первого, второго, третьего и других порядков, а затем редуцентам, сопровождающееся потерей определенного количества энергии на каждом трофическом уровне как следствие процессов , сопровождающие дыхание.
Закон оптимальности. Никакая система не может сужаться или расширяться до бесконечности.
Закон пирамиды энергий (сформулированный Р. Линдемана). С одного трофического уровня экологической пирамиды на другой переходит в среднем не более 10% энергии.
Закон равнозначности условий жизни. Все естественные условия среды, необходимые для жизни, играют равнозначные роли.
Закон развития окружающей среды. Любая естественная система развивается лишь за счет использования материально-энергетических и информационных возможностей окружающей среды.
Закон уменьшения энергоотдачи в природопользовании. Процесс получения из природных систем полезной продукции, со временем (в историческом аспекте) на ее изготовление в среднем расходуется все больше энергии (возрастают энергетические затраты на одного человека).
Закон совокупного действия естественных факторов (закон Митчерлиха-Тинемана-баулы). Размер урожая зависит от всей совокупности экологических факторов одновременно.
Закон грунтостомлення (снижение плодородия). Из-за длительного использования и нарушения естественных процессов почвообразования происходит постепенное снижение естественного плодородия почв.
Закон физико-химического единства живого вещества (сформулированный В. И. Вернадским). Вся живое вещество Земли имеет единую физико-химическую природу.
Закон экологической корреляции. В экосистеме живое вещество и абиотические компоненты функционально соответствуют друг другу, выпадение одной части системы неизбежно приводит к выключению связанных с ней других частей экосистемы и функциональных изменений.
Законы Б. Коммонера
— Все связано со всем;
— Все должно куда деваться;
— Природа знает лучше;
— Ничто не дается даром.
Закон эмерджентности. Целое всегда имеет особые свойства, отсутствующие в его частей.
Закон необходимого разнообразия. Система не может состоять из абсолютно идентичных элементов, но может иметь иерархическую организацию и интегративные уровне.
Закон необратимости эволюции. Организм (популяция, вид) не может вернуться к прежнему состоянию, реализованного его предками.
Закон усложнения организации. Историческое развитие живых организмов приводит к усложнению их организации путем дифференциации органов и функций.
Биогенный закон (Э. Геккель). Онтогенез организма является кратким повторением филогенеза данного вида, т.е. развитие индивида сокращенно повторяет историческое развитие своего вида.
Закон неравномерности развития частей систем. Система одного вида развивается не совсем синхронно — в то время, когда один достигает более высокой стадии развития, другие остаются в менее развитом состоянии.
Закон сохранения жизни. Жизнь может существовать только в процессе движения через живое тело потока веществ, энергии, информации.
Принцип сохранения упорядоченности (И. Пригожин). В открытых системах энтропия не возрастает, а уменьшается, пока не достигается минимальная постоянная величина.