Автор работы: Пользователь скрыл имя, 28 Октября 2013 в 09:28, реферат
Вода входит в состав окружающего воздуха и является необходимым компонентом для всех живых существ: людей и животных. Комфортность окружающих условий определяется, в основном, двумя факторами: относительной влажностью и температурой. Вы можете себя чувствовать вполне комфортно при температуре -30 °С в Сибири, где зимой воздух обычно очень сухой, но Вам будет совсем неуютно при температуре 0 °С в Кливленде, расположенном на берегу озера, где очень влажно. (Естественно, что здесь учитываются только климатические факторы и не рассматриваются экономические, культурные и политические). Работа многих также сильно зависит от уровня влажности.
Общие сведения. Основные определения.
Методы и средства измерения влажности.
Измерение влажности психометрическим влагомером.
Датчики и первичные преобразователи для измерения относительной влажности.
Регуляторы влажности.
Заключение.
Литература.
В связи с этим характеристики
влажности, а также величины и
единицы влажности
Влагосодержание – величины и единицы, выражающие реальное количество влаги в веществе. Основной характеристикой влагосодержания является абсолютная влажность, определяемая как количество влаги в единице объема:
(1)
К этому классу характеристик
можно отнести парциальное
(2)
где Т – абсолютная температура, n0 – постоянная Лошмидта, равная числу молекул идеального газа в 1 см3 при нормальных условиях, т.е. при p0= 760 Торр= 1015 Гпа и T0 = 273,1б К. Часто используется такая характеристика абсолютной влажности как точка росы, т.е. температура, при которой данная абсолютная влажность газа становится 100%. Эта характеристика привнесена в гигрометрию метеорологам и, т. к. является наиболее характерной при определении момента выпадения росы и определения ее количества.
Влагосостояние – процентное соотношение, равное отношению абсолютной влажности к максимально возможной при данной температуре:
(3)
Относительная влажность может характеризоваться так называемым дефицитом парциального давления, равного отношению парциального давления влаги к максимально возможному при данной температуре. Очень редко в гигрометрических измерениях можно встретить дефицит точки росы.
Связь между температурой
и максимально возможной
(4)
На практике чаще пользуются таблицей давления насыщенных паров над плоской поверхностью воды или льда при различных температурах. Эти данные приведены в табл. 1.
Таблица 1. Давление насыщенных паров над плоской поверхностью воды
t°c |
Рнк, мбар |
Анкг/м3 |
t°C |
Рнк, мбар |
Анкг/м3 |
0 |
6,108 |
4,582 |
31 |
44,927 |
33,704 |
1 |
6,566 |
4,926 |
32 |
47,551 |
35,672 |
2 |
7,055 |
5,293 |
33 |
50,307 |
37,740 |
3 |
7,575 |
5,683 |
34 |
53,200 |
39,910 |
4 |
8,159 |
6,120 |
35 |
56,236 |
42,188 |
5 |
8,719 |
6,541 |
36 |
59,422 |
44,576 |
6 |
9,347 |
7,012 |
37 |
62,762 |
47,083 |
7 |
10,013 |
7,511 |
38 |
66,264 |
49,710 |
8 |
10,722 |
8,043 |
39 |
69,934 |
52,464 |
9 |
11,474 |
8,608 |
40 |
73,777 |
55,347 |
10 |
12,272 |
9,206 |
41 |
77,802 |
58,366 |
t°c |
Рнк, мбар |
Анкг/м3 |
t°C |
Рнк, мбар |
Анкг/м3 |
11 |
13,119 |
9,842 |
42 |
82,015 |
61,527 |
12 |
14,017 |
10,515 |
43 |
86,423 |
64,839 |
13 |
14,969 |
11,229 |
44 |
91,034 |
68,293 |
14 |
15,977 |
11,986 |
45 |
95,855 |
71,909 |
15 |
17,044 |
12,786 |
46 |
100,89 |
75,686 |
16 |
18,173 |
13,633 |
47 |
106,16 |
79,640 |
17 |
19,367 |
14,529 |
48 |
111,66 |
83,766 |
18 |
20,630 |
15,476 |
49 |
117,40 |
87,772 |
19 |
21,964 |
16,477 |
50 |
123,40 |
92,573 |
20 |
23,373 |
17,534 |
51 |
129,65 |
97,262 |
21 |
24,861 |
18,650 |
52 |
136,17 |
102,153 |
22 |
26,430 |
19,827 |
53 |
142,98 |
107,268 |
23 |
28,086 |
21,070 |
54 |
150,07 |
112,581 |
24 |
29,831 |
22,379 |
55 |
157,46 |
118,125 |
25 |
31,671 |
23,759 |
56 |
165,16 |
123,900 |
26 |
33,608 |
25,212 |
57 |
173,18 |
129,917 |
27 |
35,649 |
26,743 |
58 |
181,53 |
136,009 |
28 |
37,796 |
28,354 |
59 |
190,22 |
142,700 |
29 |
40,055 |
30,048 |
60 |
199,26 |
149,482 |
30 |
42,430 |
31,830 |
На стандартных справочных
данных, приведенных в табл. 1, основаны
практически все пересчеты
Среди приборов для измерения
влажности наиболее массовыми являются
приборы для определения
Гигрометры как
Востребованность гигрометров породила разработки и изготовление большого количества различных типов приборов. Большинство измерителей влажности представляют собой датчики влажности с индикатором либо аналогового сигнала, либо сигнала в цифровой форме. Поскольку индикаторами являются в большинстве своем либо механические устройства, либо электроизмерительные приборы, рассмотренные в предыдущих разделах, остановимся на датчиках влажности, определяющих почти все функциональные возможности гигрометров.
Датчики гигрометров можно классифицировать по принципу действия на следующие типы:
Наиболее древний, наиболее
простой и наиболее дешевый датчик
влажности представляет собой обычный
волос, натянутый между двумя
пружинами. Для измерения влажности
используется свойство волоса изменять
длину при изменении влажности.
Несмотря на кажущуюся примитивность
такого датчика и на то, что процесс,
лежащий в основе измерения, не определяется
законами физики и поэтому не поддается
расчету, гигрометры с волосяными датчиками
изготавливаются в большом
Емкостные датчики влажности в настоящее время по массовости использования конкурируют и даже превосходят волосяные, поскольку по простоте и дешевизне они не уступают волосяным. Измеряемой физической величиной является емкость конденсатора, а это означает, что в качестве индикатора или выходного устройства может использоваться любой измеритель емкости. На подложку из кварца наносится тонкий слой алюминия, являющийся одной из обкладок конденсатора.
На поверхности алюминиевого покрытия образуется тонкая пленка окиси Al2O3. На окисленную поверхность наносится напылением второй электрод из металла, свободно пропускающего пары воды. Такими материалами могут быть тонкие пленки палладия, родия или платины. Внешний пористый электрод является второй обкладкой конденсатора.
Конструкция резистивного датчика влажности представляет собой меандр из двух не соприкасающихся электродов, на поверхность которого нанесен тонкий слой гигроскопического диэлектрика. Последний, сорбируя влагу из окружающей среды, изменяет сопротивление промежутков между электродами меандра. О влажности судят по изменению сопротивления или проводимости такого элемента.
В последнее время появились
гигрометры, в основу работы которых
положен фундаментальный
(5)
где Iλ – интенсивность излучения, падающего на поглощающий столб; N – концентрация поглощающих атомов (число молекул в единице объема); l – длина поглощающего столба, δλ– молекулярная константа, равная площади «тени», создаваемой одним атомом и выраженной в соответствующих единицах.
Пары воды имеют интенсивные
полосы поглощения в инфракрасной области
спектра и в области длин волн
от 185 нм до 110 нм – в так называемой
вакуумной ультрафиолетовой области.
Имеются отдельные разработки по
созданию инфракрасных и ультрафиолетовых
оптических влагомеров, и все они
имеют одно общее положительное
качество – это влагомеры мгновенного
действия. Под этим понимается рекордно
быстрое установление аналитического
сигнала для пробы, помещенной между
источником света и фотоприемником.
Другие особенности оптических датчиков
определяются тем, что в инфракрасной
области поглощение молекулами воды
соответствует вращательно-
У оптических датчиков имеется и один общий недостаток – влияние на показание мешающих компонентов. В инфракрасной области это различные молекулярные газы, например окиси углерода, серы, азота, углеводороды и т.д. В вакуумном ультрафиолете основным мешающим компонентом является кислород. Тем не менее можно выбрать длины волн в ВУФ, где поглощение кислорода минимально, а поглощение паров воды максимально. Например, удобной областью является излучение резонансной линии водорода с длиной волны А, = 121,6 нм. На этой длине волны у кислорода наблюдается «окно» прозрачности в то время, как пары воды заметно поглощают. Другой возможностью является использование излучения ртути с длиной волны 184,9 нм. В этой области кислород излучения не поглощает и весь сигнал поглощения определяется парами воды.
Одна из возможных конструкций оптического датчика влажности дана на рис. 4. Резонансная водородная лампа с окном из фтористого магния располагается на расстоянии в несколько миллиметров от фотоэлемента с катодом из никеля. Никелевый фотоэлемент имеет длинноволновую границу чувствительности -190 нм. Окна из фтористого магния имеют коротковолновую границу прозрачности 110 нм. В этом диапазоне длин волн (от 190 до 110 нм) в спектре водородной лампы присутствует только резонансное излучение 121,6 нм, которое и используется для измерения абсолютной влажности без какой-либо монохроматизации.
У оптического датчика, схема которого изображена на рис. 4 есть еще одна особенность – возможность изменять чувствительность изменением расстояния от лампы до фотоприемника. В самом деле, с увеличением расстояния наклон характеристики dU/dN выходного сигнала от концентрации прямо пропорционален величине зазора между лампой и фотодиодом.
Важным качеством оптического датчика является следствие из закона Ламберта-Бугера-Бера, состоящее в том, что такой датчик нужно калибровать только в одной точке. Если, например, определить сигнал с прибора при какой-либо одной определенной концентрации паров воды, то отградуировать шкалу прибора можно расчетным путем на том основании, что изменение логарифма сигналов при различных концентрациях равно:
(6)
где N – концентрация (число) молекул в единице объема; δλ – сечение поглощения, I – длина поглощающего промежутка.
Для определения относительной
и абсолютной влажности на практике
часто используются приборы, получившие
название психрометров. Психрометры
представляют собой два одинаковых
термометра, один из которых обернут
фитилем и смачивается водой.
Мокрый термометр показывает температуру
ниже, чем сухой термометр в
том случае, если относительная влажность
не равна 100%. Чем ниже относительная
влажность, тем больше разность показаний
сухого и мокрого термометров. Для
психрометров различных конструкций
составляются так называемые психрометрические
таблицы, по которым находятся
Психрометр не очень удобен в эксплуатации, поскольку его показания не просто автоматизировать, и требуется постоянное увлажнение фитиля. Тем не менее именно психрометр является самым простым и вместе с тем достаточно точным и надежным средством измерения влажности. Именно по психрометру чаще всего градуируются гигрометры с волосяными, емкостными или резистивными датчиками.
В заключение кратко остановимся
на методах измерения влажности
жидкостей и твердых
3. Измерение влажности психометрическим влагомером
Влажность газов, жидкостей и твердых материалов – один из важных показателей в технологических процессах. Влажность газов, например, необходимо измерять в сушильных установках, при очистке газов, в газосборниках, при кондиционировании воздуха и т.д. Измерение содержания воды в нефти, спиртах, ацетоне проводят в процессах нефтепереработки и нефтехимии, в пульпах – в производстве серной кислоты и минеральных удобрений. Измерение влажности твердых сыпучих материалов занимает важное место в производстве красок, минеральных удобрений, строительных материалов; влажность волокнистых материалов определяет качество продукции при производстве бумаги и картона.
Влажность газов в технологических процессах обычно измеряют психрометрическим методом.
Действие психрометрических влагомеров основано на измерении двух температур: температуры «сухого» термодатчика, помещенного в анализируемый газ, и температуры «мокрого» термодатчика, завернутого в чулок из влажной ткани, конец которой опущен в воду. За счет испарения воды этот термодатчик охлаждается до температуры меньшей, чем температура газа. С увеличением влажности газа испарение идет менее интенсивно и температура «мокрого» термометра растет. При влажности 100% вода вообще не будет испаряться и температуры обоих термодатчиков сравняются.
Информация о работе Измерение влажности психометрическим влагомером