Глобальные экологические проблемы

Автор работы: Пользователь скрыл имя, 25 Ноября 2012 в 15:28, реферат

Краткое описание

Кислотность водного раствора определяется присутствием в нем положительных водородных ионов Н+ и характеризуется концентрацией ионов водорода в одном литре раствора (моль/л или г/л). Щелочность водного раствора определяется присутствием гидроксильных ионов ОН - и характеризуется их концентрацией. Шкала кислотности лежит в интервале от pH = 0 (высокая кислотность) через pH = 7 (нейтральная среда) до pH = 14 (высокая щелочность). Изменение значения pH на единицу соответствует изменению концентрации ионов водорода в 10 раз. Однако вода обычного дождя представляет собой слаб

Прикрепленные файлы: 1 файл

Введение.docx

— 44.06 Кб (Скачать документ)

III. Поверхность океанов. После  испарения капель воды, поступающих  в атмосферу с поверхности  океанов, остаётся морская соль, содержащая наряду с ионами  натрия и хлора соединения  серы – сульфаты. Вместе с частичками  морской соли ежегодно в атмосферу  Земли попадает от 50 до 200 млн.  т. серы, что гораздо больше, чем  эмиссия серы в атмосферу естественным  путём. В тоже время частицы  соли из-за своих больших размеров  быстро выпадают из атмосферы  и, таким образом, только ничтожная  часть серы попадает в верхние  слои и распыляется над сушей.  Однако следует учитывать тот  факт, что из сульфатов морского  происхождения не может образовываться  серная кислота, поэтому с точки  зрения образования кислотных  дождей они не имеют существенного  значения. Их влияние сказывается  лишь на регулировании образования  облаков и осадков.

Антропогенные источники эмиссии  серы в атмосферу:

В результате деятельности человека в атмосферу попадают значительные количества соединений серы, главным  образом в виде двуокиси (SO2). Среди  источников этих соединений на первом месте в мире стоит уголь, сжигаемый  на электростанциях и др. промышленных предприятиях. Уголь дает 70% от всех антропогенных выбросов. В процессе горения часть серы держащееся в топливе превращается в сернистый газ, а часть остается в золе в твердом состоянии. Содержание серы также достаточно велико (0.1 – 2%) и в неочищенной нефти, но эти показатели варьируются в зависимости от происхождения, однако при сгорании нефтепродуктов сернистого газа образуется значительно меньше, чем при сгорании угля. В мире на первом месте по выбросам сернистых соединений в атмосферу стоят такие отрасли промышленности как: металлургическая, предприятия по производству серной кислоты и переработке нефти. Таким образом, в результате деятельности человека в атмосферу Земли попадает ежегодно около 60 – 70 млн. т. серы в виде двуокиси серы. Сравнение естественных и антропогенных источников эмиссии серы и её различных соединений в атмосферу показывает, что человек, в результате своей деятельности, загрязняет атмосферу Земли этими соединениями в 2 раза больше, чем это происходит в природе естественным путем. Соединения серы, сульфид, самородная сера и другие содержатся: в углях и в руде (особенно много сульфидов в бурых углях, при сжигании или обжиге которых образуются летучие соединения — оксид серы (сернистый ангидрид SO2), оксид серы (серный ангидрид SO3). Диоксид серы образуется при сжигании богатого серой горючего, такого, как уголь и мазут (содержание серы в них колеблется от 0,5 до 5-6%), на электростанциях (~40% антропогенного поступления в атмосферу), в металлургических производствах, при переработке содержащих серу руд, при различных химических технологических процессах и работе ряда предприятий машиностроительной отрасли промышленности (-50%). При сжигании каждого миллиона тонн угля выделяется около 25 тыс. т серы в виде главным образом ее диоксида (до серного ангидрида окисляется менее 3% серы), в 4-5 раз меньше окисленной серы дает сжигание мазута. По данным ЕЭК, двуокись (трехокись) серы поступает из теплоэлектростанций и других стационарных источников при сжигании ископаемого топлива (88%), при переработке сульфидных руд (5%), нефтепродуктов, производстве серной кислоты и др. (7%).При недостаточном обжиге или неполном сгорании, при низкой температуре образуется в малых количествах сероводород(H2S).

1.2Кислородные соединения  азота

В состав атмосферы входит ряд азотсодержащих микровеществ, но в кислотной седиментации участвуют только два из них: окись и двуокись азота, которые в результате протекающих в атмосфере реакций образуют азотистую кислоту.

NO+O3→ NO2+O2

(окись азота + озон --- двуокись  азота + молекулярный кислород).

Итак, можно предположить, что окисью азота можно пренебречь вследствие указанных окислительных процессов. Однако это не совсем так, что объясняется двумя причинами. Первая заключается в том, что выброс оксидов азота в значительной степени происходит в форме окиси азота, и требуется время, чтобы NO полностью превратилась в NO2 . С другой стороны, в непосредственной близости от источников загрязнения количество окиси азота превышает количество двуокиси азота. Это соотношение увеличивается в сторону двуокиси азота по мере приближения к территориям, непосредственно не подверженным загрязнению. Например, в чистом воздухе над поверхностью океана часть окиси азота составляет всего несколько процентов от двуокиси азота. Соотношение этих газов, впрочем, может меняться вследствие фотодиссоциации двуокиси азота:

NO2+ hυ →NO+O

(двуокись азота+ квант света --- окись азота+ атом кислорода),

Кислотную среду в атмосфере  создает также азотная кислота, образующаяся из оксидов азота. Если находящаяся в воздухе азотная кислота нейтрализуется, то образуется азотнокислая соль, которая обычно присутствует в атмосфере в виде аэрозолей. Это относится также к солям аммония, которые получаются в результате взаимодействий аммиака с какой-либо кислотой.

1.3Кислородные соединения серы

У диоксид серы, попавшего в атмосферу, под действием солнечной энергии возникают так называемые активированные молекулы, которые располагают избыточной энергией по сравнению с основным состоянием. Активированные молекулы диоксида серы в отличие от «нормальных» молекул могут вступать в химическое взаимодействие с находящимся в воздухе в довольно больших количествах молекулярным кислородом:

SO2+hυ→SO2*

SO2*+2O2→ SO3+O3

*--активированная молекула двуокиси

В тех средах, где имеется относительно высокое содержание двуокиси азота  под действием света (hυ) может выделяться атомарный кислород и протекать следующие реакции:

NO2+hυ →NO+O

SO2+O→ SO3

Образовавшийся оксид серы (SO3), очень быстро взаимодействует с  атмосферной водой и образуется серная кислота.

SO3 + Н2O → Н2SO4

Однако основная часть выбрасываемого диоксида серы во влажном воздухе  образует кислотный полигидрат SО2•nH2O, который часто называют сернистой кислотой и изображают условной формулой Н2SО3:

SO2 + H2O → H2SO3

Сернистая кислота во влажном воздухе  постепенно окисляется до серной:

2Н2SО3 + О2 → 2Н2SO4.

Аэрозоли серной и сернистой  кислот приводят к конденсации водяного пара атмосферы и становятся причиной кислотных осадков (дожди, туманы, снег). При сжигании топлива образуются твердые микрочастицы сульфатов  металлов (в основном при сжигании угля), легко растворимые в воде, которые осаждаются на почву и  растения, делая кислотными росы.

Находящийся в атмосфере хлор (выбросы  химических предприятий; сжигание отходов; фотохимическое разложение фреонов, приводящее к образованию радикалов хлора) при соединении с метаном (источники  поступления метана в атмосферу: антропогенный - рисовые поля, а также  результат таяния гидрата метана в вечной мерзлоте вследствие потепления климата) образует хлоро-водород, хорошо растворяющийся в воде с образованием аэрозолей соляной кислоты

Сl• + СН4 → CН•3 + НСl,

СН•3 + Сl2 → CН3Cl + Сl•.

Очень опасны выбросы фтороводорода (производство алюминия, стекольное), который хорошо растворяется в воде, что приводит к появлению в атмосфере аэрозолей плавиковой кислоты.

2.Влияние на биосферу

Самый богатый животный мир присущ водам, рН которых лежит в нейтральной или слабощелочной области. Он во много раз богаче, чем животный мир кислых или щелочных вод. Водоемы с очень кислыми водами необитаемы, жизни в них нет, как нет жизни и в водоемах со значениями рН > 11. Первыми жертвами кислотных дождей стали озера и реки. Связь жизни водных организмов с изменением рН в водоемах приведена на рис.4 Сотни озер в Скандинавии, на северо-востоке США и на юго-востоке Канады, в Шотландии превратились в кислотные водоемы. Кислотные дожди привели к резкому снижению продуктивности 2500 озер Швеции (рис.2). В Норвегии примерно половина поверхностных вод имеет повышенную кислотность, из 5000 озер в 1750 исчезла рыба. В провинции Онтарио (Канада) пострадало 20% озер, а в провинции Квебек - до 60% озер.

Подкисление водоемов происходит за счет вымывания анионов серной и  азотной кислот из почвы-главного аккумулятора кислотных загрязнений.

Выделяют три стадии воздействия  кислотных дождей на водоемы. Первая стадия - начальная. С увеличением  кислотности воды (показатели рН меньше 7) водяные растения начинают погибать, лишая других животных водоема пищи, уменьшается количество кислорода в воде, начинают бурно развиваться водоросли (буро-зеленые).

Первая стадия эутрофикации (заболачивания) водоема. При кислотности рН 6 погибают пресноводные креветки. Вторая стадия - кислотность повышается до рН 5.5, погибают донные бактерии, которые разлагают органические вещества и листья, и органический мусор начинает скапливаться на дне. Затем гибнет планктон — крошечное животное, которое составляет основу пищевой цепи водоема и питается веществами, образующимися при разложении бактериями органических веществ. Третья стадия - кислотность достигает рН 4.5, погибает вся рыба, большинство лягушек и насекомых.

При рН = 4, 5 кислотность раствора стабилизируется. В этих условиях кислотность раствора регулируется реакцией гидролиза соединений алюминия. В такой среде способны жить только немногие виды насекомых, растительный и животный планктон, а также белые водоросли.

Первая и вторая стадии обратимы при прекращении воздействия  кислотных дождей на водоем. По мере накопления органических веществ на дне водоемов из них начинают выщелачиваться токсичные металлы.

При повышении кислотности воды (еще до критического порога выживания  водной биоты, например, для моллюсков таким порогом является рН = 6, для окуней - рН = 4,5) в ней быстро нарастает содержание алюминия за счет взаимодействия гидроксида алюминия придонных пород с кислотой: А1(ОН)3+ЗH2O+3Н+→[Al(H2O)6]3+. Даже небольшая концентрация ионов алюминия (0,2 мг/л) смертельна для рыб. В то же время фосфаты, обеспечивающие развитие фитопланктона и другой водной растительности, соединяясь с алюминием, становятся малодоступными этим организмам. Повышение кислотности приводит к появлению в воде высокотоксичных ионов тяжелых металлов - кадмия, свинца и других, которые прежде входили в состав нерастворимых в воде соединений и не представляли угрозы живым организмам. Дефицит питательных веществ и интоксикация воды приводят к своеобразной "стерилизации" водоемов. Закисленная и токсичная вода разрушает скелеты рыб и раковины моллюсков, а главное - снижает репродуктивные процессы. В свою очередь, это приводит к сокращению популяций наземных животных и птиц, связанных с водной биотой трофическими цепями (цепи питания). "Мертвая вода" усиливает дефицит пресной воды, обусловленный возрастающими масштабами хозяйственного и бытового использования и ее загрязнением.

Среди факторов, воздействующих на популяции  рыб в связи с подкислением, называют нехватку кальция, осаждение  алюминия на жабрах и, главным образом, нарушение репродуктивных процессов. Чувствительны к подкислению  также амфибии, ракообразные, хирономиды, личинки поденок и веснянок, сокращение биомассы которых существенно сказывается на численности околоводных птиц.

Эти токсичные металлы представляют опасность для здоровья человека.

Люди, пьющие воду с высоким содержанием  свинца или принимающие в пищу рыбу с высоким содержанием ртути, могут приобрести серьёзные заболевания.

Алюминий способен вызывать болезнь  Альцгеймера, разновидность преждевременного старения. Тяжелые металлы, находящиеся  в природных водах, отрицательно влияют на почки, печень, центральную  нервную систему, вызывая различные  онкологические заболевания. Генетические последствия отравления тяжелыми металлами  могут проявиться через 20 лет и  более не только у тех, кто употребляет  грязную воду, но и у их потомков.

Что касается состояния рек и  озер России, то качество воды большинства  водных объектов в течение всех последних  лет наблюдений и контроля со стороны  Госкомэкологии не отвечает нормативным требованиям из-за сильного загрязнения промышленными сточными водами. Все (обратите на это внимание!) основные реки России и их крупные притоки оцениваются как "загрязненные" или "сильно загрязненные". При таком положении кислотные осадки Почвенные организмы более приспособлены к пониженным значениям рН почвенной влаги, но и они угнетаются возрастающей кислотностью, особенно азотфиксирующие бактерии и грибницы. Разрыхляющие почву дождевые черви могут жить в слабокислых почвах, в таких условиях они "нейтрализуют" почвенные кислоты с помощью выделяемой ими извести; в кислой почве дождевые черви погибают. мало изменяют качественные характеристики воды.

Подкисление почвы приводит к изменению  Аl/Са и Al/Mg отношений, которые в Центральной Европе за последние двадцать лет возросли почти в два раза. Однако емкость почв по отношению к кислотным загрязнениям определяется их минеральным составом, катионным обменом, почвенным дыханием и другими факторами, которые в свою очередь зависят от геологического субстрата, климата и растительности. Существует несколько расчетных моделей оценки кислотности почв и ее картографического анализа, в ряде случаев выявляющих очень высокую степень корреляции с геологическим субстратом.

Широко известно, что алюминий, растворенный в сильнокислой среде, ядовит для живущих в почве организмов. Во многих почвах, например, в северных умеренных и бореальных лесных зонах, наблюдается поглощение более высоких концентраций алюминия по сравнению с концентрациями щелочных катионов. Хотя многие виды растений в состоянии выдержать это соотношение, однако при выпадении значительных количеств кислотных осадков отношение алюминий/кальций в почвенных водах настолько возрастает, что ослабляется рост корней и создается опасность для существования деревьев.

Информация о работе Глобальные экологические проблемы