Автор работы: Пользователь скрыл имя, 31 Мая 2013 в 20:03, реферат
Биоритмологический подход к феномену времени как к биологическому параметру и изучение закономерностей временной организации живых систем открывают новые возможности для регуляции и управления процессами, протекающими в организме. Одна из центральных проблем современной биоритмологпи — проблема синхронизации и десинхронизации биоритмов. Десинхронизация биологических ритмов, наблюдаемая при адаптивных и патологических процессах, позволила установить, что исследование биоритмов является важным методическим приемом в решении вопросов физиологии труда, выявлении патологического процесса, адаптации человека к измененным геофизическим и социальным синхронизаторам, подбора космонавтов.
1. Биоритмологический подход к феномену времени. Основные проблемы современной биоритмологии.
2. Определение понятия биологический ритм. Основные параметры. Классификация и эволюционные аспекты формирования современных биоритмов.
3. Физиологические ритмы как основной параметр существования живых организмов.
4. Адаптивные физиологические ритмы: циркадные и сезонные.
5. Концепция трех ритмов. Современный взгляд на её суть.
6. Проблема десинхронизации биологических ритмов. Динамические болезни.
7. Биоритмология в диагностике и терапии современной медицины.
8. Выводы.
План реферата
1. Биоритмологический подход к феномену времени. Основные проблемы современной биоритмологии.
2. Определение понятия
биологический ритм. Основные параметры.
Классификация и эволюционные
аспекты формирования
3. Физиологические ритмы как основной параметр существования живых организмов.
4. Адаптивные физиологические ритмы: циркадные и сезонные.
5. Концепция трех ритмов. Современный взгляд на её суть.
6. Проблема десинхронизации биологических ритмов. Динамические болезни.
7. Биоритмология в
диагностике и терапии
8. Выводы.
Биоритмологический подход к феномену времени как к биологическому параметру и изучение закономерностей временной организации живых систем открывают новые возможности для регуляции и управления процессами, протекающими в организме.
Одна из центральных
проблем современной
Б и о л о г и ч е с к и е р и т м ы — колебания смены и интенсивности процессов и физиологических реакций. В их основе лежат изменения метаболизма биологических систем, обусловленные влиянием внешних и внутренних Факторов. Факторы, которые влияют на ритмичность процессов, происходящих в живом организме, получили определение "с и н х р о н и з а т о р ы", или "д а т ч и к и в р е м е - н и".
К в н е ш н и м ф а к т о р а м относятся: изменение освещенности (фотопериодизм), температуры (термопериодизм), магнитного поля, интенсивности космических излучений, приливы и отливы, сезонные и солнечно-лунные влияния; социальные влияния, характерные для человека.
К в н у т р е н н и м ф а к т о р а м относятся нейрогуморальные процессы, протекающие в определенном, наследственно закрепленном темпе и ритме.
Ритмы, независимые от
внешних синхронизаторов, называются
э н д о г е н -
н ы м и. Ритмы, формирующиеся под влиянием
внешних синхронизаторов, т.е. факторов
внешней среды, идентифицированы как э
к з о г е н н ы е. Для большинства биоритмов
характерна эндогенность генерирования,
малая изменчивость установившейся длительности
циклов на протяжении онтогенеза.
Ритмы формируют внешние синхронизаторы. Ярким примером формирования эндогенных ритмов под влиянием синхронизаторов внешней среды является влияние на новорожденного ребенка с его эндогенными ритмами таких синхронизаторов, как свет, звук, пища и др., а по мере развития ребенка усиливается роль социальных факторов. Сравнительно быстро у ребенка формируется суточный 24-часовой ритм физиологических процессов. Известный хронопедиатр Т.Хельбрюгге установил, что первые признаки суточной периодики выделения с мочой натрия и калия отмечается на 4-20 неделе, а креатинина и хлоридов на 16-22 месяце после рождения. На 2-3 неделе происходит начало синхронизации с ритмом дня и ночи на протяжении суток таких показателей, как температура тела, а частота пульса — на 4-20 неделе жизни ребенка. В первые 2 недели жизни экскреция с мочой котизола и кортикостерона имеет незначительные суточные колебания (максимальная экскреция в 16-20 часов, минимальная — поздним вечером и ночью), что характерно для детей старшего возраста и взрослых. "Таким образом, становление суточного ритма экскреции кортикостероидов происходит уже на 2-3 неделе жизни ребенка.
Биологические ритмы - изменения,
периодичность которых
В соответствии с циркадными ритмами центрального гипоталамо-гипофизарного звена изменяется и секреторная активность периферических эндокринных желез.
Основными параметрами биоритмов являются такие показатели:
1. период — время
между двумя одноименными
2. акрофаза — точка
времени в периоде, когда
3. мезор — уровень среднего значения показателей изучаемого процесса;
4. амплитуда — величина
отклонения исследуемого
Фаза колебания характеризует состояние колебательного процесса в момент времени; измеряется в долях периода, а в случае синусоидальных колебаний — в угловых и дуговых единицах.
К л а с с и ф и к а ц и я р и т м о в базируется на строгих определениях, которые зависят от выбранных критериев.
Ю.Ашофф (1984 г.) подразделяет ритмы:
1. по их собственным характеристикам, таким как период;
2. по их биологической системе, например популяция;
3. по роду процесса, порождающего ритм;
4. по функции, которую выполняет ритм.
Диапазон периодов биоритмов широкий: от миллисекунд до нескольких лет. Их можно наблюдать, в отдельных клетках, в целых организмах или популяциях. Для большинства ритмов, которые можно наблюдать в ЦНС или системах кровообращения и дыхания, характерна большая индивидуальная изменчивость. Другие эндогенные ритмы, например овариальный цикл, проявляют малую индивидуальную, но значительную межвидовую изменчивость. Существуют также четыре циркаритма, периоды которых в естественных условиях не меняются, т.е. они синхронизированы с такими циклами внешней среды, как приливы, день и ночь, фазы Луны и время года. С ними связаны приливные, суточные, лунные и сезонные ритмы биологических систем. Каждый из указанных ритмов может поддерживаться в изоляции от соответствующего внешнего цикла. В этих условиях ритм протекает "свободно", со своим собственным, естественным периодом.
Классификация биологических ритмов по Х а л б е р г у наиболее распространена — классификация по частотам колебаний, т.е. по величине. обратной длине периодов ритмов:
зона ритмов |
область ритмов |
длина периодов |
Высокочастотная |
Ультрадианная |
менее 0,5 ч 0,5 - 20 ч |
Среднечастотная |
Циркадная Инфрадианная |
20 - 28 ч 28 ч - 3 сут |
Низкочастотная |
Циркасептанная Циркадисептанная Циркавигинтанная Циркатригинтанная Цирканнуальная |
7 + 3 сут 14 + 3 сут 20 + 3 сут 30 + 7 сут 1 год + 2 мес |
Классификация биоритмов Н.И. М о и с е е в о й и В.Н. С ы с у е в а (1961) выделяет пять основних классов:
1. Ритмы высокой частоты:
от доли секунды до 30 мин (ритмы
протекают на молекулярном
2. Ритмы средней частоты (от 30 мин до 28 ч, включая ультрадианные и циркадные продолжительностью до 20 ч и 20 - 23 ч соответственно).
3. Мезоритмы (инфрадианные и циркасептанные около 7 сут продолжительностью 28 ч и 6 дней соответственно).
4. Макроритмы с периодом от 20 дней до 1 года.
5. Метаритмы с периодом 10 лет и более.
Многие авторы выделяют также ритмы по уровню организации биосистем:
клеточные, органные, организменные, популяционные.
По ф о р м е условно выделяют следующие виды физиологических колебаний: импульсные, синусоидальные, релаксационные, смешанные.
Ритмы с периодом в несколько лет и десятилетий связывают с изменениями на Луне, Солнце, в Галактике и др. Известно более 100 биоритмов с периодом от долей секунд до сотен лет.
Биологические ритмы, совпадающие по кратности с геофизические ритмами, называются а д а п т и в н ы м и (экологическими). К ним относят суточные, приливные, лунные и сезонные ритмы. В биологии адаптивные ритмы рассматриваются с позиций общей адаптации организмов к среде обитания, а в физиологии — с точки зрения выявления внутренних механизмов такой адаптации и изучения динамики функционального состояния организмов на протяжении длительного периода времени.
В течения многих миллионов лет эволюции "шлифовалась" временная организация биосистем. Постоянно адаптируясь к меняющимся условиям и воздействиям факторов окружающей среды, вместе с живой материей, синхронно с её усложняющимся развитием, совершеннее и разнообразнее становились биоритмы. Уместно предположить, что эволюция животного мира "шла" через совершенствование биоритмов, выполнявших ведущую роль факторов адаптации к изменяющимся условиям внешней среды. Суточная периодичность времени, смена дня и ночи, индуцировали и закрепили суточные ритмы многочисленных процессов в организме, а смена времени года сформировала сезонные ритмы.
Основное диалектическое противоречие биоритмов состоит в том, что будучи универсальной формой адаптации, через непрерывные колебательные процессы они обеспечивают развитие защитно-адаптационных реакций организма,символизируя саму жизнь.
Ритм — яркая иллюстрация
диалектического характера
а к р о ф а з а м, т.е. тем моментам, когда
регистрируемый процесс достигает крайних
значений : максимума и минимума. Понятие
"Фаза" часто используется как обозначение
точки отсчета при анализе временной последовательности
событий. В качестве таких точек отсчета
принимают начало сна или момент пробуждения,
начало работы и др. При смещении этих
точек во времени говорят о сдвиге фазы.
Так, сдвиги фазы характерны при переходе
в другой временной (новый часовой) пояс
или для сменного режима работы.
Очень важной характеристикой является а м п л и т у д а ритмического процесса. К числу категорий биоритмов относят и зону "блуждания" фазы, точнее акрофазы. Если в течение, например, ряда суточных циклов отмечать на шкале времени положение акрофазы (максимума или минимума) ритма какой-либо функции,то это положение варьирует в некотором диапазоне, который и называется з о н о й б л у- ж д а н и я ф а з ы (акрофазы).
Р и т м — это универсальная особенность самодвижения материи, результат борьбы противоположностей, которые являются источником самодвижения, характеризующегося непрерывной сменой доминирования каждой из двух противоборствующих сторон. Так достигается качественная устойчивость материальных объектов. Таким образом, ритм внутренне присущ движению.
Ф и з и о л о г и ч е с к и е р и т м ы — циклические колебания в различных системах организма. Они составляют основу жизни. Одни ритмы поддерживаются в течение всей жизни, и даже кратковременное их прерывание приводит к смерти. Другие появляются в определенные периоды жизни индивидуума, причем часть из них находится под контролем сознания, а часть протекает независимо от него. Ритмические процессы взаимодействуют друг с другом и с внешней средой.
Изменение ритмов, выходящих за пределы нормы, либо появление их там, где они раньше не обнаруживались, связано с болезнью.
Физиологические ритмы являются одной из основных форм проявления жизнедеятельности, наблюдаются у всех живых организмов и на всех уровнях организации живой материи — от субклеточных структур до целостного организма. Они, как правило, не являются строго периодическими колебаниями: в определенных пределах меняется их период, амплитуда, форма, уровень. Примером их могут служить записи некоторых физиологических ритмов у человека: электрокардиограмма, сфигмограмма сонной артерии, сейсмокардиограмма, пневмограмма, электроэнцефалограмма, суточная периодика частоты дыхания, суточная периодика экскреции калия с мочой.
Наиболее близки к периодическим колебаниям физиологические ритмы, которые возникают при усвоении организмом ритмичных внешних сигналов (напр., световых мельканий), различные адаптивные ритмы.
Физиологические ритмы характеризуются широким спектром частот; их период варьирует от десятитысячных долей секунды до нескольких лет. Часто один и тот же показатель одновременно участвует в нескольких видах колебательных изменений (напр., пульсовые, дыхательные и суточные изменения артериального давления, волны различной частоты на ЭЭГ). Характерные для одной системы ритмы могут передаваться другой (напр., изменения частоты сердечных сокращений в ритме дыхания). Физиологические ритмы могут быть замаскированы апериодическими колебаниями исследуемого показателя (шумами) и другими ритмическими колебаниями, форма их часто бывает сложной. Поэтому разработаны специальные методы анализа, позволяющие выявлять и изучать скрытую периодичность физиологических процессов (гармонический анализ, автокорреляционный анализ, скользящее суммирование и др.).