Автор работы: Пользователь скрыл имя, 29 Марта 2014 в 13:05, реферат
В 1833-1834 гг. Сорби и Дюпре показали, что процессы самоочищения в реке связаны с жизнедеятельностью микроорганизмов. Это открытие в биологии позволило химику Дибдингу, работавшему в Лондоне вместе с Сорби и Дюпре, предсказать принципы и механизм обеспечения биологической очистки в первичных отстойниках и аэротенках. Дибдин записал в 1887 г.: «По всей вероятности, правильное направление в очистке сточной жидкости (при отсутствии подходящей почвы), состояло бы в том, что сначала выделить осадок, а затем к осветленной жидкости прибавить разводку специфических всевозможных организмов, специально культивируемых для этой цели, потом выдержать жидкость в течение достаточного времени, энергично ее аэрируя, и, наконец, спустить в реку в состоянии действительно очищенном».
1. Введение. 2
2. Биологическая очистка. Общие сведения. 3
3. Биохимические основы методов биологической очистки сточных вод. 4
4. Принципы очистки сточных вод в аэротенках и основные характеристики активного ила. 11
5. Аэротенк, как основное сооружение биологической очистки. 20
6. Технологические схемы очистки сточных вод в аэротенках. 23
6.1. Схемы очистки сточных вод с окислением углеродных загрязнений, нитрификацией и денитрификацией. 23
6.2. Схемы очистки сточных вод с окислением углеродных загрязнений, нитрификацией, денитрификацией и дефосфотированием. 23
7. Станции биологической очистки сточных вод с нулевой эмиссией серии «МЕГАПОЛИС» разработки и производства ЗАО «Компания «ЭКОС». 29
7.1. Общие сведения 29
7.2. Описание технологической схемы очистки сточных вод. 32
8. Список литературы: 40
В свете современных взглядов модель перемещения субстрата через клеточную мембрану предполагает наличие в ней гидрофильного "канала", через который внутрь клетки могут проникать гидрофильные субстраты. Однако в отличие от вышеописанной модели здесь осуществляется стереоспецифическое перемещение, достигаемое, вероятно, за счет "эстафетной" передачи молекул субстрата от одной функциональной группы к другой. Субстрат при этом, как ключ, открывает соответствующий для его проникновения канал (модель трансмембранного канала).
Вторая альтернативная модель может рассматриваться как комбинация первых двух с использованием их положительных свойств. В ней предполагается наличие гидрофобного мембранного переносчика, который путем последовательных конформационных изменений, вызываемых субстратом, проводит его с внешней на внутреннюю сторону мембраны (модель конформационной транслокации), где гидрофобный комплекс распадается. В данной интерпретации механизма транспорта субстрата через клеточную мембрану термин "переносчик" по-прежнему употребляется, хотя все чаще заменяется термином "пермеаза", учитывающим генетическую основу его кодирования как мембранного компонента клетки для целей переноса вещества внутрь клетки.
Установлено, что в состав мембранных транспортных систем часто входит более одного белкового посредника и между ними может существовать разделение функций. "Связующие" белки идентифицируют субстрат в среде, подводят и концентрируют его на внешней поверхности мембраны и передают его "истинному" переносчику, т.е. компоненту, осуществляющему перенос субстрата через мембрану. Так, выделены белки, участвующие в "узнавании", связывании и транспорте ряда сахаров, карбоновых кислот, аминокислот и неорганических ионов в клетки бактерий, грибов, животных.
Превращение процесса переноса вещества в клетку в однонаправленный процесс "активного" транспорта, приводящий к повышению содержания питательных веществ в клетке против их концентрационного градиента в среде, требует от клетки определенных энергетических затрат. Поэтому процессы переноса субстрата из окружающей среды внутрь клетки сопряжены с протекающими внутри клетки процессами метаболического высвобождения заключенной в субстрате энергии. Энергия в процессе переноса субстрата расходуется на химическую модификацию либо субстрата, либо самого переносчика с тем, чтобы исключить или затруднить как взаимодействие субстрата с переносчиком, так и возврат субстрата диффузионным путем через мембрану обратно в раствор.
Современные воззрения на процессы биохимического изъятия и окисления органических соединений основываются на двух кардинальных положениях теории ферментативной кинетики. Первое положение постулирует, что фермент и субстрат вступают во взаимодействие друг с другом, образуя фермент-субстратный комплекс, который в результате одной или нескольких трансформаций приводит к появлению продуктов, снижающих барьер активации катализируемой ферментом реакции за счёт её дробления на ряд промежуточных этапов, каждый из которых не встречает энергетических препятствий для своего осуществления. Второе положение констатирует то, что независимо от характера соединений и количества этапов в ходе ферментативной реакции, катализируемой ферментом, в конце процесса фермент выходит в неизменном виде и способен вступать во взаимодействие со следующей молекулой субстрата. Иными словами, уже на этапе изъятия субстрата клетка взаимодействует с субстратом с образованием относительно непрочного соединения, называемого "фермент-субстратным комплексом". С каждой молекулой фермента (а точнее, с каждым её каталитическим центром) реагирует одна молекула субстрата, Причем реакция носит обратимый характер:
где Е - фермент (энзим); S - субстрат; ES - субстрат-ферментный комплекс.
Являясь промежуточным соединением, этот комплекс подвергается дальнейшим ферментативным преобразованиям. В простейшем случае в результате трансформации комплекса образуется продукт реакции - Р и незатронутый реакцией фермент Е, т.е.
Чаще всего распаду комплекса предшествует его химическое преобразование (активирование), которое составляет ещё одну (или несколько) промежуточную стадию (стадий), что выражено уравнением Михаэлиса-Монтен.
Вышеуказанное хорошо иллюстрируется примером извлечения из раствора глюкозы различными микроорганизмами, содержащими фермент глюкозооксидазу в среде с молекулярным кислородом. Глюкозооксидаза образует фермент-субстратный комплекс - глюкоза - кислород - глюкозооксидаза, после распада, которого образуются промежуточные продукты глюконолактон и пероксид водорода. Образовавшийся в результате распада указанного комплекса глюконолактон подвергается гидролизу с образованием глюконовой кислоты. Суммарно обе эти реакции можно выразить уравнением:
Пероксид водорода под воздействием фермента каталазы (или пероксидазы) расщепляется на воду и кислород, т.е.
Одним из важнейших свойств ферментов является их способность синтезироваться при наличии и под воздействием определенного вещества. Другим не менее важным свойством является специфичность воздействия фермента как по отношению к катализируемой им реакции, так и по отношению к самому субстрату. Иногда фермент способен воздействовать на один единственный субстрат (абсолютная специфичность), но значительно чаще фермент воздействует на группу схожих по наличию в них определенных атомных группировок субстратов.
Многим ферментам присуща стереохимическая специфичность, состоящая в том, что фермент воздействует на группу субстратов (а иногда на один), отличающихся от других особым расположением атомов в пространстве. Роль каждого фермента в процессе биохимического окисления органических веществ строго определенна: он катализирует либо окисление (т.е. присоединение кислорода или отщепление водорода), либо восстановление (т.е. присоединение водорода или отщепление кислорода) вполне определенных химических соединений. При дегидрировании тот или иной фермент может отщеплять лишь определенные атомы водорода, занимающие определенное пространственное положение в молекуле субстрата или промежуточного продукта. Сказанное относится и к ферментам, катализирующим другие метаболические процессы.
Процессы биохимического окисления у гетеротрофных микроорганизмов делят на три группы в зависимости от того, что является конечным акцептором водородных атомов или электронов, отщепляемых от окисляемого субстрата. Если акцептором является кислород, то этот процесс называется клеточным дыханием или просто дыханием; если акцептор водорода органическое вещество, то процесс окисления называют брожением; наконец, если акцептором водорода является неорганическое вещество типа нитратов, сульфатов и пр., то процесс называют анаэробным дыханием, или просто анаэробным.
Наиболее полным является процесс аэробного окисления, т.к. его продукты - вещества, не способные к дальнейшему разложению в микробиальной клетке и не содержащие запаса энергии, которая могла бы быть освобождена обычными химическими реакциями. Главные из этих веществ, как уже отмечалось - диоксид углерода (С02) и вода (Н2О). Хотя оба эти вещества содержат кислород, химический путь их образования в клетке может быть различным, поскольку диоксид углерода может получаться в результате биохимических процессов, протекающих в бескислородной среде под воздействием ферментов - декарбоксилаз, отщепляющих СО2 от карбоксильной группы (СООН) кислоты. Вода же в результате жизнедеятельности клетки образуется исключительно путем соединения кислорода воздуха с водородом тех органических веществ, от которых он отщепляется в процессе их окисления.
Аэробная диссимиляция субстрата - углеводов, белков, жиров - носит характер многостадийного процесса, включающего первоначальное расщепление сложного углеродсодержащего вещества на более простые субъединицы (к примеру полисахариды - в простые сахара; жиры - в жирные кислоты и глицерол; белки - в аминокислоты), подвергающиеся, в свою очередь, дальнейшей последовательной трансформации. При этом
доступность субстрата окислению существенно зависит от строения углеродного скелета молекул (прямой, разветвленный, циклический) и степени окисления углеродных атомов. Наиболее легко доступными считаются сахара, особенно гексозы, за ними следуют многоатомные спирты (глицерин и др.) и карбоновые кислоты. Общий конечный путь, которым завершается аэробный обмен углеводов, жирных кислот, аминокислот, - цикл трикарбоновых кислот (ЦТК) или цикл Кребса, в который эти вещества вступают на том или ином этапе. Отмечается, что в условиях аэробного метаболизма около 90% потребляемого кислорода используется на дыхательный путь получения энергии клетками микроорганизмов.
Брожение является процессом неполного расщепления органических веществ, преимущественно углеводов в условиях без кислорода, в результате которого образуются различные промежуточные частично окисленные продукты, такие как спирт, глицерин, муравьиная, молочная, пропионовая кислоты, бутанол, ацетон, метан и др., что широко используется в биотехнологии для получения целевых продуктов. До 97% органического субстрата может превращаться в такие побочные продукты и метан [3 стр. 227-233].
В аэрационных сооружениях микробиальная масса пребывает во взвешенном в жидкости состоянии в виде отдельных хлопьев, представляющих собой зооглейные скопления микроорганизмов, простейших и более высокоорганизованных представителей фауны (коловратки, черви, личинки насекомых), а также водных грибов и дрожжей. Этот биоценоз организмов, развивающихся в аэробных условиях, на органических загрязнениях, содержащихся в сточной воде, получил название активного ила. Доминирующая роль в нем принадлежит различным группам бактерий - одноклеточным подвижным микроорганизмам с достаточно прочной внешней мембраной, способным не только извлекать из воды растворенные и взвешенные в ней органические вещества, но и самоорганизовываться в колонии — хлопья, сравнительно легко отделимые затем от очищенной воды отстаиванием или флотацией. Размер хлопьев зависит как от вида бактерий, наличия и характера загрязнений, так и от внешних факторов — температуры среды, гидродинамических условий в аэрационном сооружении и пр.
Хлопьеобразующая способность активного ила зависит главным образом от наличия питательных веществ: при слишком высоком их содержании происходят рассеивание колоний и появление нитчатых форм микроорганизмов; при их недостатке, хотя нитчатые формы микроорганизмов практически отсутствуют, размеры хлопьев ила уменьшаются и ухудшаются его седиментационные свойства. Бактерии имеют такую высокую скорость воспроизводства, что в условиях избыточного питания и отсутствия внешних сдерживающих их рост факторов 1 мг бактерий за 1 сут. может привести к образованию десятков тонн живой микробиальной массы. Собственно на этой способности к быстрому размножению и, следовательно, высокой скорости потребления питательных веществ и основано использование биологических методов очистки сточных вод.
Роль других микроорганизмов и простейших в активном иле заключается в поддержании определенного равновесия видового и количественного состава ила, хорошо приспособленного к тем или иным условиям, господствующим в аэрационном сооружении, а также полноты протекания биохимических превращений, которым подвергаются органические соединения.
Способность клетки вырабатывать многообразие ферментов объясняет ее высокую адаптируемость к различным видам и концентрациям загрязнений, присутствующих в сточных водах. Так, постепенное введение веществ при определенных концентрациях, ингибирующих ферментативную деятельность клеток, позволяло поддерживать эту деятельность даже при концентрациях более высоких, чем те, которые прекращали ее при внезапном введении ингибитора. Это, в свою очередь, объясняет постоянное расширение области применения биохимических методов очистки сточных вод от производственных загрязнений.
По современным представлениям, активный ил — это скопление микроорганизмов, в которых клетки окутаны густой «паутиной» растворимых или слаборастворимых внеклеточных полимерных образований, состоящих из полисахаров, протеинов, рибонуклеиновых и дезоксинуклеиновых кислот (РНК, ДНК), которые содержат много "ключевых" функциональных групп (карбоксильные, гидроксильные, сульфгидрильные и др.), ведущих себя как анионные связующие площадки. Биохимическое и биофизическое взаимодействие между хлопьями ила и загрязнениями позволяет довольно быстро извлекать из воды и нерастворенные загрязнения за счет сорбции их активным илом, хотя они и не успевают гидролизоваться клеточным веществом. Следует отметить, что суммарная поверхность микроорганизмов достигает 100 м на 1 г сухого вещества ила, что в свою очередь объясняет огромную сорбционную способность ила и потребность в эффективном перемешивании содержимого бассейна. Однако основная масса изъятых таким образом мелкодисперсных и коллоидных загрязнений, не задержанных в первичных отстойниках, не гидролизуется и, следовательно, не окисляется активным илом, что приводит лишь к весовому увеличению массы ила в аэрационном сооружении.
С инженерной точки зрения определяющими для технологического и конструктивного оформления процесса биологической очистки будут являться скорости изъятия загрязнений из очищаемой воды, т.е. собственно процесса очистки воды и скорости биохимического разложения изымаемых загрязнений. В этой связи представляют интерес основные закономерности развития колонии микроорганизмов, вводимой в контакт с жидкостью, содержащей питательные вещества, при достаточном обеспечении ее растворенным кислородом. В этом развитии можно выделить следующие фазы (рис.1):
I - лаг-фазу,
или фазу адаптации, которая наблюдается
сразу после введения
II - фазу экспоненциального роста (фазу ускоренного роста) микроорганизмов, в которой избыток питательных веществ и отсутствие (или весьма незначительное присутствие) продуктов обмена веществ способствует поддержанию максимально возможной в данных условиях скорости размножения клеток, определяемой лишь биологической сущностью процесса их воспроизводства;
III - фазу замедленного роста, в которой скорость роста биомассы начинает все более сдерживаться по мере истощения питательных веществ и накопления продуктов метаболизма в культуральной среде;