Автор работы: Пользователь скрыл имя, 05 Апреля 2014 в 15:18, реферат
Развитие мировой и российской энергетики требует решения проблемы экологической оценки возможных последствий на окружающую среду, жизнь и здоровье населения. Объекты энергетики по степени влияния на окружающую среду принадлежат к числу наиболее интенсивно воздействующих на биосферу. Поэтому при решении выбора источника энергии необходимо учитывать не только экономические, но и экологические последствия возможного влияния объектов энергетики при строительстве и эксплуатации.
Октавные уровни звукового давления L, дБ, в расчетных точках внутри здания при работе одного источника шума определяли по формуле:
(1)
где Lw – октавный уровень звуковой мощности, дБ; χ – коэффициент, учитывающий влияние ближнего поля; Ф – фактор направленности источника шума; Ω – пространственный угол излучения источника, рад; r – расстояние от акустического центра источника шума до расчетной точки, м; k – коэффициент, учитывающий нарушение диффузности звукового поля в помещении; В – акустическая постоянная помещения, м2.
Акустическая постоянная помещения:
(2)
где αcp – средний коэффициент звукопоглощения; А – эквивалентная площадь звукопоглощения, м2.
Эквивалентная площадь звукопоглощения:
(3)
где αi – коэффициент звукопоглощения i-й поверхности; Si – площадь i-й поверхности, м2.
Для расчета приняты следующие значения:
Lw = 102 дБА, χ = 2; Ф = 1; Ω = 2π рад; r = 4 м; k = 1,25; αcp = 0,15; S = 260 м2; А = 39 м2; В = 45,9 м2.
Величина шума внутри здания составляет: L = 91,5 дБА.
Уровень звуковой мощности шума Lпр, дБ, прошедшей через ограждение на территорию, рассчитывается по формуле:
(4)
где Li – уровень звуковой мощности источника, дБА; Вш – акустическая постоянная помещения с источником (источниками) шума, м2; k – коэффициент, учитывающий нарушение диффузности звукового поля в помещении; S – площадь ограждения, м2; R – изоляция воздушного шума ограждением, дБА.
Для расчета шума, прошедшего через стену, приняты следующие значения:
Lw = 91,5 дБА, Вш = 45,9 м2, k = 1,25; S = 80 м2, R = 54 дБ уменьшение шума стеной в один кирпич.
В результате расчета получается, что величина шума с наружной стороны здания составляет Lпр = 36,8 дБА.
Допустимые уровни шума на территории около домов согласно СН 2.2.4/2.1.8.562–96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки» приведены в табл. 5.
Таблица 5 Допустимые уровни шума
Назначение территорий |
Время суток, ч |
Уровни звука и эквивалентные уровни звука (в дБА) |
Территории, непосредственно прилегающие к жилым зданиям, домам отдыха, домам-интернатам для престарелых и инвалидов |
7.00–23.00 |
55 |
23.00–7.00 |
45 |
Таким образом, шум, создаваемый дизельной установкой, будет ниже допустимого для территории, непосредственно прилегающей к жилым домам. Поэтому специальных мероприятий по снижению шума не требуется.
Газопоршневые мини-ТЭЦ
Для оценки шумового воздействия электростанции, состоящей их 4 газопоршневых двигателей мощностью 1000 кВт, необходимо произвести расчет уровня звукового давления на территории, прилегающей к зданию.
Электростанция размещена в здании, имеющем размеры 30×16×6 м. Стены выполнены в один кирпич.
Согласно каталогу технических данных электроагрегат номинальной мощностью 1000кВт создает уровень звукового давления 99 дБА.
Акустический расчет уровня звукового давления L, дБ, в помещении с несколькими источниками шума:
(5)
где Lw – октавный уровень звуковой мощности, дБ; χ – коэффициент, учитывающий влияние ближнего поля; Ф – фактор направленности источника шума; Ω – пространственный угол излучения источника, рад; r – расстояние от акустического центра источника шума до расчетной точки, м; k – коэффициент, учитывающий нарушение диффузности звукового поля в помещении; В – акустическая постоянная помещения, м2.
Для расчета приняты следующие значения:
Lw = 99 дБА, χ = 2; Ф = 1; Ω = 2π рад; r = 1 м; k = 1,25; αcp = 0,15; S = 1032 м2; А = 154,8 м2; В = 182,12 м2.
Величина шума внутри здания составляет: L = 98,86 дБА.
Для расчета шума, прошедшего через стену, приняты следующие значения:
L = 98,86 дБА, Вш = 182,12 м2, k = 1,25; Sогр = 180 м2, R = 54 дБ уменьшение шума стеной в один кирпич.
В результате расчета получается, что величина шума с наружной стороны здания составляет Lпр = 43,9 дБА.
Таким образом, шум, создаваемый электростанцией, состоящей их 4 газопоршневых двигателей мощностью 1000 кВт, будет ниже допустимого для территории, непосредственно прилегающей к жилым домам. Поэтому специальных мероприятий по снижению шума не требуется.
[http://www.rae.ru/fs/?
Расчет системы вентиляции рабочего помещения для разработчиков энергетических установок мини-ТЭЦ.
Нормирование параметров микроклимата.
Для легкой категории работ представим в виде таблицы сравнения с фактическими нормативными параметрами параметры температуры, относительной влажности и скорости движения воздуха:
Таблица 18. Оптимальные нормы микроклимата в помещении
Период года |
Категория работ |
Температура воздуха,гр.С не более |
Относительная влажность воздуха, % |
Скорость движения воздуха, м/с |
Холодный |
легкая-1а |
22-24 |
40-60 |
0,1 |
Теплый |
легкая-1а |
23-25 |
40-60 |
0,1 |
Таблица 19. Фактические параметры микроклимата в помещении
Период года |
Категория работ |
Температура воздуха,гр.С |
Относительная влажность воздуха, % |
Скорость движения воздуха, м/с |
Холодный |
легкая-1а |
22 |
45 |
0,1 |
Теплый |
легкая-1а |
23 |
55 |
0,1 |
Из таблиц мы видим, что фактические параметры микроклимата в помещении соответствуют нормативным.
Нормирование уровней вредных химических веществ.
Источниками загрязнения помещения являются вредные вещества внешней среды и более ста соединений, выделяющихся из строительных материалов здания, мебели, одежды, обуви и биоактивные соединения(антропотоксины) самого человека.
Рассматривая загрязнение помещения вредными веществами внешней среды, надо прежде всего учитывать местоположение здания, в нашем случае это место вблизи автострады. Наиболее частыми загрязнителями, попадающими из внешней среды в помещение, являются оксид углерода, диоксид азота, диоксид серы, свинец, пыль, сажа и др.
Строительные конструкции являются источниками поступления в помещение главным образом радона и торона, при этом наиболее высокая концентрация создается в домах из бетонных конструкций при плохом проветривании.
Мебель, одежда и обувь выделяют пыль с содержанием минерального волокна, углеводороды, полиэфирные смолы и другие соединения. Из биоактивных соединений наиболее значимы диоксид углерода, сероводород и др.
К наиболее опасным загрязнителям помещения относятся продукты курения, концентрация которых при наличии курящих людей в десятки раз выше, чем в их отсутствии.
В таблице приведем возможный состав вредных веществ в анализируемом помещении с указанием их предельно допустимых концентраций:
Таблица 20. Характеристика вредных веществ, содержащихся в воздухе помещения (ГОСТ 12.1.005-88 и ГН 2.2.5.686-98)
Вредные вещества |
ПДК, мг/м3 |
Класс опасности |
Действие на человека |
1. Внешние источники (от автострады) | |||
Оксид углерода |
20 |
4 |
Блокирует гемоглобин, нарушает тканевое дыхание |
Диоксид азота |
5 |
2 |
Наркотическое действие, действие на кровеносную систему |
Свинец (выхлопы автомобилей) |
0,01/0,0070 |
1 |
Общетоксическое, канцерогенное |
Пыль (сажа) |
4 |
4 |
Раздражающее, канцерогенное |
2. Строительные материалы (бетонные конструкции) | |||
Радон, торон, полоний, уран |
0,015 |
1 |
Канцерогенное, общетоксическое |
3. Мебель, одежда, обувь | |||
4. фенопласты |
6 |
3 |
Общетоксическое, аллергическое, канцерогенное |
Полиэфирный лак |
6 |
2 |
|
Капролактам |
10 |
3 |
|
Формальдегид |
05 |
9 |
|
Бензол |
5 |
2 |
|
Пыль растительного и животного происхождения |
2-6 |
4 |
|
5. Антропоксины | |||
Диоксид углерода |
10 |
2 |
Раздражающее, действует на ЦНС |
Сероводород |
3 |
3 |
|
Микробы |
Общетоксическое | ||
Клещи |
Аллергическое | ||
6. Продукты курения | |||
Никотин |
10 |
3 |
Наркотическое |
В помещении имеется приточно-вытяжная вентиляция.
Нормирование уровней аэроионизации.
Основное применение ионизаторов - создание в помещениях оптимальной концентрации отрицательно заряженных аэроионов, которые необходимы для нормальной жизнедеятельности. Лишенный аэроионов воздух - "мертвый", ухудшает здоровье и ведет к заболеваниям.
В таблице приведем согласно СанПиН 2.2.2.542-96 уровни положительных и отрицательных аэроионов в воздухе помещения:
Таблица 21. Уровни ионизации воздуха помещений при работе на ВДТ и ПЭВМ
Уровни |
Число ионов в 1 см. куб. воздуха | |
n+ |
n- | |
Минимально необходимые |
400 |
600 |
Оптимальные |
1500-3000 |
3000-5000 |
Максимально допустимые |
50000 |
50000 |
Расчет приточно-вытяжной вентиляции.
Системы кондиционирования следует устанавливать так, чтобы ни теплый, ни холодный воздух не направлялся на людей. В помещениях рекомендуется создавать динамический климат с определенными перепадами показателей. Температура воздуха у поверхности пола и на уровне головы не должна отличаться более чем на 5 градусов. В помещениях помимо естественной вентиляции предусматривают приточно-вытяжную вентиляцию. Основным параметром, определяющим характеристики вентиляционной системы, является кратность обмена, т.е. сколько раз в час сменится воздух в помещении.
Расчет для помещения
Vвент - объем воздуха, необходимый для обмена;
Vпом - объем рабочего помещения.
Для расчета примем следующие размеры рабочего помещения:
Соответственно объем помещения равен:
V помещения = А * В * H =168 м3
Необходимый для обмена объем воздуха Vвент определим исходя из уравнения теплового баланса:
Vвент * С( tуход - tприход ) * Y = 3600 * Qизбыт
Qизбыт - избыточная теплота (Вт);
С = 1000 - удельная теплопроводность воздуха (Дж/кгК);
Y = 1.2 - плотность воздуха (мг/см).
Температура уходящего воздуха определяется по формуле:
tуход = tр.м. + ( Н - 2 )t , где
t = 1-5 градусов - превышение t на 1м высоты помещения;
tр.м. = 25 градусов - температура на рабочем месте;
Н = 4.2 м - высота помещения;
tприход = 18 градусов.
tуход = 25 + ( 3,5 - 2 ) 2 = 28
Qизбыт = Qизб.1 + Qизб.2 + Qизб.3 , где
Qизб. - избыток тепла от электрооборудования и освещения.
Qизб.1 = Е * р , где
Е - коэффициент потерь электроэнергии на топлоотвод ( Е=0.55 для освещения);
р - мощность, р = 40 Вт * 14 = 560 Вт.
Qизб.1 = 0.55 * 560=308 Вт
Qизб.2 - теплопоступление от солнечной радиации,
Qизб.2 =m * S * k * Qc , где
m - число окон, примем m = 4;
S - площадь окна, S = 2.3 * 2 = 4,6 м2.
k - коэффициент, учитывающий остекление. Для двойного остекления
k = 0.6;
Qc = 127 Вт/м - теплопоступление от окон.
Qизб.2 = 4 * 4,6 * 0,6 * 127 = 1402 Вт
Qизб.3 - тепловыделения людей
Qизб.3 = n * q , где
q = 80 Вт/чел. , n - число людей, например, n = 15
Qизб.3 = 15 * 80 = 1200 Вт
Qизбыт = 308 +1402 + 1200 = 2910 Вт
Из уравнения теплового баланса следует:
Vвент м3
К = 1048/186 = 6,2
Оптимальным вариантом является кондиционирование воздуха, т.е. автоматическое поддержание его состояния в помещении в соответствии с определенными требованиями (заданная температура, влажность, подвижность воздуха) независимо от изменения состояния наружного воздуха и условий в самом помещении.
[Методические указания «Безопасность и экологичность проектных решений для студентов инженерно-экономических специальностей». Москва, 1999]
Информация о работе Анализ опасных и вредных факторов в малой энергетике