Автор работы: Пользователь скрыл имя, 01 Декабря 2013 в 14:23, реферат
Научно-техническая революция привела к возникновению таких понятий, как большие и сложные экономические системы, обладающие специфическими для них проблемами. Необходимость решения таких проблем привела к появлению особых подходов и методов, которые постепенно накапливались и обобщались, образуя, в конце концов, особую науку - системный анализ.
Следующим этапом является разработка
программы решения задачи на ЭВМ.
Для сложных объектов, состоящих
из большого числа элементов, обладающих
большим числом свойств, может потребоваться
составление базы данных и средств
работы с ней, методов извлечения
данных, нужных для расчетов. Для
стандартных задач
На заключительном этапе производится эксплуатация модели и получение результатов.
Таким образом, решение задачи включает следующие этапы:
1. Содержательная постановка задачи.
2. Системный анализ.
3. Системный синтез (математическая постановка задачи)
4. Разработка или выбор програмного обеспечения.
5. Решение задачи.
Последовательное
Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности. Экономить на вычислениях при управлении то же самое, что экономить на прицеливании при выстрелах. Однако ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию. Системный подход в экономике эффективен и сам по себе, без использования ЭВМ, как метод исследования, при этом он не изменяет ранее открытых экономических законов, а только учит, как их лучше использовать.
1.1. Основные системные понятия
Кибернетическая система - это
множество взаимосвязанных
Каждый элемент системы, в свою очередь, может быть системой, которая по отношению к исходной системе является подсистемой. В свою очередь, любая система может быть подсистемой другой системы, которая по отношению к ней является надсистемой.
Средой данной системы называется система, состоящая из элементов, не принадлежащих этой системе.
Объединение двух систем есть система, составленная из элементов объединяемых систем.
Пересечение двух систем есть система, состоящая из элементов, принадлежащих одновременно обоим этим системам.
Объединение системы и ее среды называется система-универсум.
Пересечение системы и ее среды называется пустой системой. Она не содержит ни одного элемента.
Для того, чтобы элементы
системы могли воспринимать, запоминать
и перерабатывать информацию, они
должны обладать изменчивостью, т.е. менять
свои свойства. Говорят, что элемент
может находиться в разных состояниях.
Каждый элемент характеризуется
набором показателей. При изменении
значения хотя бы одного из показателей
элемент переходит в другое состояние,
т.е. состояние элемента определяется
совокупностью конкретных значений
показателей элемента. Система в
целом также может
Показатели могут быть числовыми и нечисловыми. Числовые показатели могут быть непрерывными и дискретными. Нечисловые показатели обычно выражают в виде числовых, например - интеллект (коэффициент интеллекта), уровень знаний студента (оценка в баллах), отношение одного человека к другому (социологические индексы).
Элемент может осуществлять воздействие на другие элементы системы, изменяя их состояние. Для перехода элемента из одного состояния в другое требуется определенная энергия. Если физический процесс воздействия одного элемента на другой дает также энергию для перевода в другое состояние, то на второй элемент осуществляется энергетическое воздействие. Если же указанный процесс дает только сведения о состоянии воздействующего элемента, а энергия для перевода в другое состояние элемента, на который направлено воздействие, берется из иного источника, то на элемент осуществляется информационное воздействие. Говорят, что первый элемент передает сигнал второму элементу.
Сигнал есть сообщение о состоянии элемента.
В дальнейшем мы будем употреблять термин "передача сигнала" вместо "информационное воздействие" и "воздействие" вместо "энергетическое воздействие".
Состояние элемента может меняться самопроизвольно, или в результате сигналов и воздействий, поступающих извне системы.
Сообщение - это совокупность сигналов.
Сигналы, вырабатываемые элементами
системы, могут поступать за пределы
системы, в этом случае они называются
выходными сигналами системы. В
свою очередь, на элементы могут поступать
сигналы извне системы, они называются
входными. Аналогичным образом
Структура системы - это совокупность
ее элементов и связей между ними,
по которым могут проходить
Входами называются элементы системы, к которым приложены входные воздействия или на которые поступают входные сигналы.
Входными показателями называются те показатели системы, которые изменяются в результате входного воздействия или сигнала.
Выходами называются элементы системы, которые осуществляют воздействие или передают сигнал в другую систему.
Выходными показателями называются те показатели системы, изменения которых вызывают выходное воздействие или выходной сигнал, либо сами являются таким воздействием или сигналом.
1.2. Классификация систем.
Классификацию кибернетических систем мы проведем по двум критериям: степень сложности системы и ее детерминированность.
По степени сложности системы бывают:
1. Простые.
2. Сложные.
3. Сверхсложные.
К простым относятся системы,
имеющие простую структуру и
легко поддающиеся
Сложными являются системы,
имеющие много внутренних связей
и сложное математическое описание,
реализуемое на ЭВМ. Сверхсложные системы
не поддаются математическому
По второму критерию системы делятся на детерминированные и вероятностные.
Все возможные случаи получаются
комбинированием указанных
1. Простые детерминированные системы:
- холодильник с регулятором;
- система размещения станков в цехе;
- система автобусных маршрутов;
- семейный бюджет;
- расписание занятий факультета;
2. Сложные детерминированные системы:
- ЭВМ;
- цветной телевизор;
- сборочный автоконвейер;
3. Сверхсложные
- шахматы.
4. Простые вероятностные системы:
- лотерея;
- система статистического
контроля продукции на
5. Сложные вероятностные системы:
- система материально-
- система диспетчирования
движения самолетов вблизи
- система диспетчирования энергетической системы России;
6. Сверхсложные вероятностные системы:
- предприятие в целом,
включая все его технические,
экономические,
- общество;
- человеческий мозг.
1.3. Динамика системы
Состояние системы - это совокупность значений ее показателей.
Все возможные состояния системы образуют ее множество состояний. Если в этом множестве определено понятие близости элементов, то оно называется пространством состояний.
Движение (поведение) системы - это процесс перехода системы из одного состояния в другое, из него в третье и т.д.
Если переход системы из одного состояния в другое происходит без прохождения каких-либо промежуточных состояний, то система называется дискретной.
Если при переходе между любыми двумя состояниями система обязательно проходит через промежуточное состояние, то она называется динамической (непрерывной).
Возможны следующие режимы движения системы:
1) равновесный, когда система находится все время в одном и том же состоянии;
2) периодический, когда
система через равные
Если система находится
в равновесном или
3) переходный режим - движение
системы между двумя периодами
времени, в каждом из которых
система находилась в
4) апериодический режим
- система проходит некоторое
множество состояний, однако
5) эргодический режим -
система проходит все
Свойства объекта и его поведение зависят от того, каким образом мы его представляем в виде системы. Например, если воздух, находящийся в этой комнате, представить в виде системы молекул, каждая из которых характеризуется своими координатами и скоростью, то поведение такой системы будет эргодично, если же определить его как систему, состоящую из одного элемента, показателями которого являются давление и температура, то такая система находится в равновесном режиме.
Для всех практических задач второй способ определения системы предпочтительнее. Мы получаем простую детерминированную систему, а в первом случае - сверхсложную вероятностную, которую мы не сможем исследовать, а если бы даже смогли, то нигде бы не использовали полученные результаты. Необходимо правильное определение системы и при исследовании экономических объектов, которыми мы желаем управлять. Инструментом исследования объектов для целей выбора оптимальных способов управления является кибернетическое моделирование.
1.4. Кибернетическое моделирование
В процессе исследования объекта часто бывает нецелесообразно или даже невозможно иметь дело непосредственно с этим объектом. Удобнее бывает заменить его другим объектом, подобным данному в тех аспектах, которые важны в данном исследовании. Например, модель самолета продувают в аэродинамической трубе, вместо того, чтобы испытывать настоящий самолет - это дешевле. При теоретическом исследовании атомного ядра физики представляют его в виде капли жидкости, имеющей поверхностное натяжение, вязкость и т.п. Управляемые объекты являются, как правило, очень сложными, поэтому процесс управления неотделим от процесса изучения этих объектов.
Модель - это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию об этом объекте.
При моделировании используется аналогия между объектом - оригиналом и его моделью. Аналогии бывают следующими:
1) внешняя аналогия (модель самолета, корабля, микрорайона, выкройка);
2) структурная аналогия (водопроводная
сеть и электросеть
3) динамическая аналогия
(по поведению системы) - маятник
моделирует электрический
4) кибернетические модели
относятся ко второму и
С описанием производят машинные эксперименты: меняют те или иные показатели, т.е. изменяют состояние объекта и регистрируют его поведение в этих условиях. Часто поведение объекта имитируется во много раз быстрее, чем на самом деле, благодаря быстродействию ЭВМ. Кибернетическую модель часто называют имитационной моделью.
Формирование описания объекта
(его системный анализ) является
важнейшим звеном кибернетического
моделирования. Вначале исследуемый
объект разбивается на отдельные
части и элементы, определяются их
показатели, связи между ними и
взаимодействия (энергетические и информационные).
В результате объект оказывается
представленным в виде системы. При
этом очень важно учесть все, что
имеет значение для той практической
задачи, в которой возникла потребность
в кибернетическом
Информация о работе Математическое моделирование экономических систем