Генетическая инженерия

Автор работы: Пользователь скрыл имя, 25 Декабря 2011 в 19:51, контрольная работа

Краткое описание

Актуальность данной темы обусловлена тем, что за сто лет своего существования генетика добралась до человека, и теперь уже она его не оставит. Она нарисует его индивидуальный генетический портрет, даст ему в руки миниатюрный прибор, в котором будет собрана вся его наследственная информация. Каждый получит предупреждение, в каком возрасте болезнь Альцгеймера приступит к разрушению его памяти, насколько велик для него риск, заболеть раком или диабетом. Генетика порождает новую медицину - к этому и стремились сто лет назад ее основатели.

Содержание

Введение…………………………………………………………….
История развития генной инженерии ……………...………..….
Влияние генов на человека ………………………………………
Научно-исследовательские аспекты …………………………….
Схема, используемая в генной инженерии ……………………..
Среда и наследственность ……………………………………….
Плюсы Генной инженерии ………………………………………
Минусы Генной инженерии……………………………………..
Уменьшение риска, связанного с генными технологиями ……
Заключение…………………………………………………………...
Список литературы…………………………

Прикрепленные файлы: 1 файл

реферат Генная инженерия.docx

— 61.62 Кб (Скачать документ)

      Статистика свидетельствует, что долголетие бабушек и дедушек (срок жизни не менее 85 лет одного из них или не менее 80 - двух) повышает шансы внуков на продолжительность жизни, превышающую среднестатистическую. Скоропостижная смерть одного из этих прародителей в возрасте до 50 лет от сосудистых или онкологических заболеваний говорит о необходимости профилактики названных болезней у их потомков. Сейчас стало модно рисовать генеалогическое древо своей семьи. Вполне естественен интерес людей к своей родословной, к тому, чем занимались их прабабушки и прадедушки, участниками каких исторических событий они были, как жили. Полезно поинтересоваться и здоровьем родственников старшего поколения, так как предрасположенность ко многим заболеваниям передается по наследству. Например, гипертония, диабет, рак. Другой пример: медики считают алкоголизм болезнью, предупреждая, что склонность к злоупотреблению спиртным может наследоваться. Что это значит? Говоря бытовым языком, человек быстрее втягивается в пьянство, быстрее спивается. Это обусловлено особенностями биохимических процессов в его организме. Однако предрасположенность и предопределенность - понятия разные. Реализация генетической программы зависит от целого комплекса условий. В рассматриваемом случае она корректируется соответствующим образом жизни. 
 

6. Плюсы Генной инженерии

     Эмбриогенез - это феноменальный процесс, при котором информация, заложенная в линейной структуре ДНК, реализуется в трехмерный организм.

     ДНК представляет запись последовательности аминокислот для построения молекул различных белков. В эмбриональном развитии в разное время появляются разные белки. Существуют гены-регуляторы, которые определяют время и скорость синтеза. Установлены состав и структура гена, но неизвестно как кодируется форма организма и, соответственно, как линейные спирали цепочной структуры белков соединяются в объемные структуры.

    Клонирование есть воспроизведение живого существа из его неполовых клеток. Это попытка прорыва сквозь запреты Природы.

    Клонирование органов и тканей - это задача номер один в области трансплантологии, травматологии и др. областях медицины и биологии.

   При пересадке клонированных органов не возникает реакции отторжения и возможных последствий (например, рака, развивающегося на фоне иммунодефицита). Клонированные органы - это спасение для людей, попавших в автомобильные аварии или иные катастрофы, а также нуждающихся в радикальной помощи из-за каких-либо заболеваний.

   Клонирование может дать возможность бездетным людям иметь своих собственных детей, поможет людям, страдающим тяжелыми генетическими заболеваниями. Так, если гены, определяющие какую-либо подобную болезнь, содержатся в хромосомах отца, то в яйцеклетку матери пересаживается ядро ее собственной соматической клетки, тогда появится ребенок, лишенный опасных генов, точная копия матери. Если эти гены содержатся в хромосомах матери, то в ее яйцеклетку будет перемещено ядро соматической клетки отца - появится здоровый ребенок, копия отца.

     Более скромная, но не менее важная задача клонирования - регуляция пола сельскохозяйственных животных, а также клонирование в них человеческих генов "терапевтических белков", которые используются для лечения людей, например гемофиликов, у которых мутирован ген, кодирующий белок, участвующий в процессе свертывания крови. Это тем более важно, поскольку гемофилии считаются "группой риска" по СПИДу.

    Бум, связанный с рождением овечки Долли, это всего лишь эпизод развитии клонирования. Когда она подрастет и обзаведется своим потомством, в ее молоке будет и человеческий белок, отличающийся от овечьего. Она станет на службу человечеству.

    Американские ученые несколько модифицировали метод шотландцев, использовав ядра эмбриональных (зародышевых) фибробластов - взятых у взрослого организма клеток. Это облегчило задачу введения "чужого" гена, поскольку в культуре фибробластов это делать значительно легче и дешевле.

    А, кроме того, так был обойден теломерасный (теломерас - бессмертие гена) запрет и смягчен запрет на клонирование (не распространяется на животных, отдельные органы и ткани, а клонирование людей отодвигается на 10 лет).

    Это сулит уникальные перспективы для человечества, несмотря на все высказанные политическими, религиозными, научными и общественными деятелями морально-этические и чисто биологические возражения по использованию клонирования. 
 
 
 

7.Минусы Генной инженерии.

        Некоторые особенности новых технологий 21 века могут привести к большим опасностям, чем существующие средства массового уничтожения. Прежде всего, это способность к саморепликации. Разрушающий и лавинно самовоспроизводящийся объект, специально созданный или случайно оказавшийся вне контроля, может стать средством массового поражения всех или избранных. Для этого не потребуются комплексы заводов, сложная организация и большие ассигнования. Угрозу будет представлять само знание: устройства, изобретённые и изготовленные в единичных экземплярах, могут содержать в себе всё, необходимое для дальнейшего размножения, действия и даже дальнейшей эволюции - изменению своих свойств в заданном направлении. Конечно, выше описаны вероятные, но не гарантированные варианты развития генной  инженерии. Успех в этой отрасли науки сможет  радикально поднять производительность труда и способствовать решению многих существующих проблем, прежде всего, подъему уровня жизни каждого человека, но, в то же время, и создать новые разрушительные средства. 
 

8. Уменьшение риска, связанного с генными технологиями.

       Совершенно ясно, что главное при  разработке правил и законов, регулирующих применение генных технологий - это создать рациональные концепции оценки риска. Действительно, как оценить риск того, чего еще никогда не случалось?

      Первый шаг в этом направлении - установить, какие именно опасности могут возникнуть и как их избежать. Следующий шаг - оценить степень риска. Уменьшить риск можно, если определить категории опасности патогенов и использовать для работы с ними соответствующее защитное оборудование. По мере накопления конкретных знаний о конкретных опасностях оценки следует уточнять.

     Есть документы, регламентирующие применение генных технологий. Это директивы, касающиеся правил безопасной работы в лабораториях и в промышленности, а также правила внесения генетически модифицированных организмов в окружающую среду. В большинстве европейских стран, как и положено, подобные директивы включены в свод национальных законов, а это, согласимся, уже немало.

    Общий вывод меморандума ФЕМО таков: “При осмотрительном применении генных технологий польза от них сильно перевесит риск отрицательных последствий; технологии конструирования рекомбинантных ДНК внесут существенный вклад в здравоохранение, в развитие устойчивого сельского хозяйства, в производство пищи, в очистку окружаю 

ЗАКЛЮЧЕНИЕ:

     Естествознание затрагивает широкий спектр вопросов о многочисленных и всесторонних проявлениях свойств природы.

     В 70-е годы XX века создана техника выделения гена из ДНК, а также методика размножения нужного гена. В результате этого возникла генная инженерия. Внедрение в живой организм чужеродной генетической информации и приемы, заставляющие организм эту информацию реализовывать, составляют одно из самых перспективных направлений в развитии биотехнологии. Методами генетической инженерии удалось получить интерферон и инсулин. Объектом биотехнологии выступает сегодня не только отдельный ген, но и клетка в целом.

    Клеточная инженерия открывает широкие возможности практического использования биомассы культивируемых клеток и создания на их основе промышленных технологий, например, для быстрого клонированного размножения и оздоровления растений.

    Применение методов клеточной инженерии позволяет существенно интенсифицировать процесс создания новых форм организмов. Метод гибридизации соматических клеток - новый метод, дающий возможность получать межвидовые гибриды, т.е. преодолевать естественный барьер межвидовой нескрещиваемости, чего нельзя было достичь традиционными методами селекции. Для этого в искусственно созданных условиях выделяют и сливают протопласты - клетки, лишенные стенок, обоих родительских растений и получают гибридные клетки, которые могут затем регенерировать целое гибридное растение с признаками обоих родителей. Это позволяет получать совершенно новые организмы, не существовавшие в природе. Но при этом возникает опасность, что искусственно созданные организмы могут вызвать непредсказуемые и необратимые последствия для всего живого на Земле, в том числе, и для человека.

    Генная и клеточная инженерия обратили внимание человечества на необходимость общественного контроля за всем, что происходит в науке.

   Проделанная работа позволяет  сделать вывод о том, что  на технологии рекомбинантных  ДНК основано получение высокоспецифичных  ДНК-зондов, с помощью которых  изучают экспрессию генов в  тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными  функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний. Технология рекомбинантных ДНК сделала возможным нетрадиционный подход "белок-ген", получивший название "обратная генетика". При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Если он экспрессируется, несущая его клетка и ее потомки будут синтезировать измененный белок. Таким образом, можно исправлять дефектные гены и лечить наследственные заболевания.

   Генетическая трансформация животных  позволяет установить роль отдельных  генов и их белковых продуктов, как в регуляции активности других генов, так и при различных патологических процессах. С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками. Сейчас, даже трудно предсказать все возможности, которые будут реализованы в ближайшие несколько десятков лет.

   В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков. Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

При помощи генной инженерии можно получать потомков с улучшенной внешностью, умственными и физическими способностями, характером и поведением. С помощью  генотерапии в будущем возможно улучшение генома и нынеживущих  людей. В принципе можно создавать  и более серьёзные изменения, но на пути подобных преобразований человечеству необходимо решить множество этических  проблем.

   Таким образом, современное состояние науки о наследственности и хромосомных болезнях не дает никаких оснований для безучастного наблюдения над проявлением тяжелых наследственных пороков у человека, как это имело место еще недавно. Однако сегодня ученым удалось выяснить только связь между нарушениями хромосомного аппарата, с одной стороны, с различными патологическими изменениями в организме человека - с другой. Касаясь вопроса о завтрашнем дне медицинской генетики, можно сказать, что установление взаимосвязи между наследственными заболеваниями и хромосомными повреждениями представляет для клинической медицины большой практический интерес. Выявление причин первоначальных нарушений в системе хромосом, а также изучение механизма развития хромосомных болезней - также задача ближайшего будущего, причем задача первостепенного значения. 
 
 
Список  литературы:

  1. Горелов А.А. Концепции современного естествознания/ А.А. Горелов. – М.;АСТРЕЛЬ, 2004.
  2. Карпенков С.Х. Концепции современного естествознания - М.: ВШ, 2003.
  3. Концепции современного естествознания./ Под ред. Проф. В.Н. Лавриненко, проф. В.П. Ратникова – М.: ЮНИТИ ДАНА, 2003.
  4. Жигалов Ю.И. Концепции современного естествознания - М.: Гелиос АРВ, 2002 
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

ПРИЛОЖЕНИЕ:

Хронология клонирования.

1883 год - открытие яйцеклетки немецким цитологом Оскаром Гертвигом (1849 -1922).

1943 год - журнал "Сайенс" сообщил об успешном оплодотворении яйцеклетки в "пробирке".

1953 год - Р. Бриге и Т. Кинг сообщили об успешной разработке метода "нуклеотрансфера" - переноса ядра клетки в гигантские икринки африканской шпорцевой лягушки.

1973 год - профессор Л. Шетлз из Колумбийского университета в Нью-Йорке заявил, что он готов произвести на свет первого "бэби из пробирки", после чего последовали категорические запреты Ватикана и пресвитерианской церкви США.

1977 год - закончилась публикация серии статей о работах профессора зоологии Оксфордского университета Дж. Гердона, в ходе которых было клонировано более полусотни лягушек. Из их икринок удалялись ядра, после чего в оставшийся "цитоплазматический мешок" пересаживалось ядро соматической клетки. Впервые в истории науки на место гаплоидного ядра яйцеклетки с одинарным набором хромосом было внесено диплоидное ядро соматической клетки с двойным набором.

1978 год - рождение в Англии Луизой Браун первого ребенка "из пробирки".

1981 год - Шетлз получает три клонированных эмбриона (зародыша) человека, но приостанавливает их развитие.

1982 год - Карл Илмензее из Женевского университета и его коллега Питер Хоппе из лаборатории Джексона в Бар-Харборе, штат Мэн, в которой с 1925 года разводят мышей, получи-ли серых мышат, перенеся ядра клеток серого зародыша в цитоплазму яйцеклеток, полученных от черной самки, после чего эмбрионы были перенесены в белых самок, которые и выносили потомство. Результаты не были воспроизведены в других лабораториях, и Илмензее обвинили в фальсификации.

Информация о работе Генетическая инженерия