Автор работы: Пользователь скрыл имя, 03 Декабря 2013 в 09:18, лекция
Бизнес-информатика- это наука о проектировании, разработке и применении информационных и коммуникационных систем в бизнесе. Специальность предполагает обучение дисциплинам, связанным с информационными технологиями, информатикой, экономикой и концепциями управления. Бизнес-информатика зародилась в Германии и сейчас успешно преподаётся в Центральной Европе и США, а также в России по программе бакалавра, магистра и специалиста.
Информатика – наука, изучающая закономерности получения, хранения, передачи и обработки информации в природе и человеческом обществе.
Тактовые импульсы вырабатываются генератором тактовых импульсов ЭВМ и используются для синхронизации процессов передачи информации между устройствами. Базовая последовательность импульсов задает тактовую частоту работы процессора и во многом определяет скорость работы ЭВМ.
Внешние устройства ввода-вывода и хранения данных подключаются к ЭВМ через адаптеры или контроллеры. Основное назначение адаптера состоит в управлении и синхронизации работы внешнего устройства с работой других устройств ЭВМ.
Устройства ввода обеспечивают считывание данных с определенных устройств (клавиатуры, сканера, графических манипуляторов и других) и преобразование их в последовательности электрических сигналов, воспринимаемых другими устройствами ЭВМ.
Устройства вывода представляют результаты обработки информации в форме, удобной для визуального восприятия. К таким устройствам относятся принтеры, мониторы, графопостроители.
Внешние устройства хранения предназначаются для организации долговременного хранения данных и программ. К устройствам внешнего хранения относятся накопители на жестких и гибких дисках, DVD (Digital Video Disk) и CD (Compact Disk) накопители, накопители на магнитных лентах (стримеры), Flasch - память и другие.
Управление работой внутренних и внешних устройств ЭВМ производится устройством управления процессора через основной набор логических схем компьютера.
Выполнение команд программы процессором.
Рассмотрим выполнение процессором команд программы.
В общем случае формат машинной команды состоит из двух частей. Одна часть содержит код операции, которую команда должна выполнить. Другая часть - адресная, содержащая адреса оперативной памяти операндов, над которыми эта операция должна быть выполнена и по какому адресу должен быть помещен результат выполнения команды. На рис. 4.3 представлен пример двухадресной команды ЭВМ.
Выполнение программы начинается с загрузки программы и исходных данных в оперативную память с внешнего устройства хранения (если программа не резидентная) и происходит под управлением Операционной системы.
Процесс начинается
с чтения и выборки первой
команды программы из
В конце цикла выполнения любой команды в счетчике команд всегда формируется адрес следующей команды, которая должна выполняться вслед за текущей.
В случае, если текущей командой была команда перехода, то в качестве адреса следующей команды в счетчик команд, помещается адрес перехода.
Из счетчика команд адрес передается в регистр адреса, а оттуда поступает в адресную шину оперативной памяти для доступа к ячейкам памяти, содержащим команду.
Команда выбирается из оперативной памяти и через шину данных и команд поступает сначала в регистр данных процессора и далее в регистр команд.
Регистр данных выполняет роль буфера между памятью и остальными регистрами процессора; через него пересылаются команды и операнды из памяти и передаются в память результаты обработки.
Устройство управления считывает из регистра команд код выполняемой команды и переходит к ее выполнению. Выдается управляющий сигнал по которому из регистра команд адреса операндов последовательно передаются в регистр адреса, а затем в адресную шину.
Код операции из регистра команд передается в арифметико-логическое устройство. Операнды выбираются из памяти и помещаются сначала в регистр данных, а после в операционные регистры 1,:, регистры N процессора.
Устройство управления формирует и передает в арифметико-логическое устройство (АЛУ) сигнал на выполнение команды. Операнды последовательно выбираются в АЛУ, выполняется операция, результат которой помещается в один из операционных регистров и далее в регистр данных.
По сигналу устройства
управления адрес результата передается
из регистра команд в регистр адреса
и далее в шину данных. Одновременно
из регистра данных по шине данных передается
и записывается в память результат
решения. В цикле выполнения следующей
команды все действия повторяются.
Классификация ЭВМ.
Классификация ЭВМ по принципу действия. По принципу действия вычислительные машины делятся на три больших класса: аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ).
Критерием деления вычислительных машин на эти три класса является форма представления информации, с которой они работают.
Цифровые вычислительные машины (ЦВМ) - вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме.
Аналоговые вычислительные машины (АВМ) - вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения).
Аналоговые вычислительные машины весьма просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой (больше, чем у ЦВМ), но точность решения задач очень низкая (относительная погрешность 2-5 %).
На АВМ наиболее эффективно решать математические задачи, содержащие дифференциальные уравнения, не требующие сложной логики.
Две формы предоставления информации в машинах: а- аналоговая; б- цифровая импульсная.
Гибридные вычислительные машины (ГВМ) - вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.
Общепринятой классификацией компьютеров является классификация по поколениям ЭВМ, в основе которой лежит элементная база.
Первое поколение - электронные вакуумные лампы (1946-до середины 50-х годов ХХ века);
Второе поколение - полупроводниковые приборы, транзисторы (до середины 60-х годов ХХ века);
Третье поколение - интегральные схемы на полупроводниковых элементах (до конца 70-х годов);
Четвертое поколение - сверхбольшие интегральные схемы (с начала 80-х годов по настоящее время).
Пятое поколение отличительными чертами ЭВМ этого поколения являются новые технологии производства, переход к новым многопроцессорным архитектурам, новые способы ввода-вывода, искусственный интеллект и т.д.
Классификация компьютеров по назначению
Специализированные - предназначены для решения узкого круга специальных задач, например по управлению конкретными техническими устройствами, технологическими процессами (станками с числовым программным управлением, роботами и т.д.).
Универсальные - используются в различных сферах человеческой деятельности для решения самых разнообразных задач: инженерно-технических, экономических, математических, информационно-поисковых и других.
Традиционная классификация производится по:
производительности,
функциональному назначению и размерам,
которая позволяет условно
Современные большие ЭВМ. Современные большие ЭВМ называются мэйнфреймами или суперкомпьютерами. Эти ЭВМ характеризуются наивысшим уровнем производительности и надежности, рассчитанные на практически любые уровни нагрузки, обладающие высокой устойчивостью к сбоям и авариям. Они обеспечивают решение любых задач, требующих больших вычислительных ресурсов: от метеорологических прогнозов и изучения управляемого термоядерного синтеза до исследований генома человека и разведки нефти и газодобычи.
Название <мэйнфрейм> (mainframe) происходит от названия корпусов центрального процессора ЭВМ IBM System/360. Именно компьютеры первых моделей семейства ЭВМ System/360, о создании которых фирма IBM объявила в 1964 году, являются родоначальниками мэйнфреймов и первыми компьютерами третьего поколения. В России аналогичная серия машин носит название машин серии ЕС.
При разработке мэйнфреймов особое внимание уделяется техническим и технологическим решениям, которые обеспечивают принцип параллельного (одновременного) выполнения двух или более процессов (программ). Именно возможность параллельной работы различных устройств больших ЭВМ является основой ускорения выполнения вычислительных операций. Создаваемые в настоящее время мэйнфрейм (или суперЭВМ) относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов - десятки миллиардов операций в секунду.
Создать такую высокопроизводительную ЭВМ по современной технологии на одном микропроцессоре не представляется возможным ввиду ограничения, обусловленного конечным значением скорости распространения электромагнитных волн (300 000 км/с), ибо время распространения сигнала на расстояние несколько миллиметров (линейный размер стороны МП) при быстродействии 100 млрд. оп/с становится соизмеримым с временем выполнения одной операции. Поэтому мэйнфрейм создается в виде высокопараллельных многопроцессорных вычислительных систем (МПВС).
Высокопараллельные МПВС имеют несколько разновидностей:
- магистральные(конвейерные) МПВС, в которых процессоры одновременно выполняют разные операции над последовательным потоком обрабатываемых данных; по принятой классификации такие МПВС относятся к системам с многократным потоком команд и однократным потоком данных (МКОД или MISD - Multiple Instruction Single Data);
- векторные МПВС, в которых все процессоры одновременно выполняют одну команду над различными данными - однократный поток команд с многократным потоком данных (ОКМД или SIMD - Single Instruction Multiple Data);
- матричные МПВС, в которых МП одновременно выполняют разные операции над несколькими последовательными потоками обрабатываемых данных - многократный поток команд с многократным потоком данных (МКМД или MIMD - Multiple Instruction Multiple Data).
Условные структуры однопроцессорной (SISD - Single Instruction Single Data) и названных многопроцессорных вычислительных систем показаны на рисунке ниже.
Крупнейшими российскими проектами в области создания суперкомпьютеров являются российский проект МВС и российско-белорусский СКИФ. Крупнейший суперкомпьютер МВС-15000ВМ отечественной разработки включает 924 процессора Power PC и имеет пиковую производительность 8100 Gflops. Суперкомпьютер установлен в Межведомственном Суперкомпьютерном центре РАН (МСЦ). Основными заказчиками машинного времени на суперкомпьютерах выступают атомная, автомобильная, судостроительная, авиационная и нефтегазовая промышленность.
Суперпараллельные компьютеры (massively parallel computers), схема работы которых показана на рисунке включают в себя сложнейшие цепи процессоров.
Вместо методов
параллельной обработки, где небольшое
количество мощных, но дорогих специализированных
процессоров связаны между
Такие ЭВМ достигают производительности суперкомпьютеров. Например, Wal-Mart Stores использует суперпараллельную машину для учета товаров и продаж, обслуживая базу данных размером 1.8 триллионов байт.
Компьютерная архитектура. Сравнение последовательной, параллельной и суперпараллельной обработки данных.
Назначение, особенности и классификация персональных компьютеров.
Персональные компьютеры представляют наиболее многочисленный и разнообразный по составу класс ЭВМ. Они используются при решении самых разных задач не только профессиональными программистами, но и специалистами других областей знаний и деятельности.
К ПК (или ПЭВМ) относится
ЭВМ, управляемая одним
1. Универсальный характер использования, в соответствии с которым на ПК могут решаться экономические, научные, производственно-технические, конструкторско-технологические и другие задачи в различных сферах человеческой деятельности.
2. Модульный характер построения архитектуры ПК, позволяющий формировать техническую конфигурацию, определять состав внутренних и внешних устройств ПК в зависимости от характера решаемых задач, требований пользователя и финансовых возможностей.
3. Развитость и разнообразие программного обеспечения (ПО), направленные на решение задач из различных областей знаний и деятельности человека.
4. Небольшие габариты, высокая надежность работы, отсутствие специальных требований к условиям эксплуатации и наличие <дружественного> человеко-машинного интерфейса, дающие возможность устанавливать ПК на рабочие места пользователя.
Первоначально основным признаком ПК служило наличие в нем микропроцессора (МП), выполненного в виде одной микросхемы. В настоящее этот признак перестал быть определяющим, так как МП используются во всех классах ЭВМ.
ПК классифицируются по следующим признакам:
1. По размеру ПК делятся на стационарные (Desktop) и переносные ПК. В состав переносных ПК включаются портативные (Laptop), блокнотного типа (Notebook) и карманные (Palmtop) ПК.
2. По типу используемых МП различают ПК, построенные на процессорах с расширенной системой команд - CISC-процессорах (CISC - Complete Instruction Set Computer), и ПК, основанные на процессорах с сокращенным набором команд - RISC-процессорах (RISC - Reduce Instruction Set Computer).