Взаимосвязь между микроорганизмами и средой. Классификация факторов воздействия на микроорганизмы

Автор работы: Пользователь скрыл имя, 27 Апреля 2015 в 22:29, статья

Краткое описание

Жизнедеятельность микроорганизмов тесно связана с окружающей средой.
С одной стороны, деятельность микроорганизмов значительно изменяет окружающую среду в результате удаления из нее питательных веществ и выделения продуктов обмена. С другой стороны, интенсивность обменных процессов зависит от условий окружающей среды.

Прикрепленные файлы: 1 файл

Взаимосвязь между микроорганизмами и средой.docx

— 25.00 Кб (Скачать документ)

Взаимосвязь между микроорганизмами и средой.Классификация факторов воздействия на микроорганизмы 
Жизнедеятельность микроорганизмов тесно связана с окружающей средой. 
С одной стороны, деятельность микроорганизмов значительно изменяет окружающую среду в результате удаления из нее питательных веществ и выделения продуктов обмена. С другой стороны, интенсивность обменных процессов зависит от условий окружающей среды.

Кроме того, при оценке воздействия некоторых внешних факторов различают три кардинальные точки: минимум, оптимум и максимум. Развитие микроорганизмов возможно между минимальной и максимальной границами. При оптимальных условиях жизнедеятельность микроорганизма проявляется наиболее интенсивно. 
Закон минимума: если хотя бы один фактор воздействия будет находиться ниже минимума или выше максимума, микроорганизм не сможет развиваться даже при оптимальных значениях всех остальных факторов.

Внешние факторы можно также разделить в зависимости от их природы на: физические – воздействие температуры, лучистой энергии, электромагнитных колебаний; физико-химические – влияние влажности, осмотического давления; химические – влияние рН, окислительно-восстановительных условий среды, химических факторов; биологические – взаимоотношения между микроорганизмами, влияние антибиотиков и фитонцидов. 
 Влияние физических факторов на микроорганизмы.Температура – один из основных факторов, определяющих возможность и интенсивность размножения микроорганизмов. Микроорганизмы могут расти и проявлять свою жизнедеятельность в определенном температурном диапазоне и в зависимости от отношения к температуре делятся на психрофилы,  мезофилы и термофилы. Разделение микроорганизмов на 3 группы весьма условно, так как микроорганизмы могут приспосабливаться к несвойственной им температуре.

Действие высоких температур на микроорганизмы. Повышение температуры выше максимальной может привести к гибели клеток. Гибель микроорганизмов наступает не мгновенно, а во времени. При незначительном повышении температуры выше максимальной микроорганизмы могут испытывать«тепловой шок» и после недлительного пребывания в таком состоянии они могут реактивироваться.

Механизм губительного действия высоких температур связан с денатурацией клеточных белков. На температуру денатурации белков влияет содержание в них воды (чем меньше воды в белке, тем выше температура денатурации). Молодые вегетативные клетки, богатые свободной водой, погибают при нагревании быстрее, чем старые, обезвоженные. Термоустойчивость – способность микроорганизмов выдерживать длительное нагревание при температурах, превышающих температурный максимум их развития.

 

Гибель микроорганизмов наступает при разных значениях температур и зависит от вида микроорганизма. Так, при нагревании во влажной среде в течение 15 мин при температуре 50–60 °С погибает большинство грибов и дрожжей; при 60–70 °С – вегетативные клетки большинства бактерий, споры грибов и дрожжей уничтожаются при 65–80° С. Наибольшей термоустойчивостью обладают вегетативные клетки термофилов (90–100 °С) и споры бактерий (120 °С).

Высокая термоустойчивость термофилов связана с тем, что, во первых, белки и ферменты их клеток более устойчивы к температуре, во вторых, в них содержится меньше влаги. Кроме того, скорость синтеза различных клеточных структур у термофилов выше скорости их разрушения.

Термоустойчивость спор бактерий связана с малым содержанием в них свободной влаги, многослойной оболочкой, в состав которой входит кальциевая соль дипиколиновой кислоты.

На губительном действии высоких температур основаны различные методы уничтожения микроорганизмов в пищевых продуктах. Это кипячение, варка, бланширование, обжарка, а также стерилизация и пастеризация. Пастеризация –процесс нагревания до 100˚С при котором происходит уничтожение вегетативных клеток микроорганизмов. Стерилизация – полное уничтожение вегетативных клеток и спор микроорганизмов. Процесс стерилизации ведут при температуре выше 100 °С.

Влияние низких температур на микроорганизмы. К низким температурам микроорганизмы более устойчивы, чем к высоким. Несмотря на то, что размножение и биохимическая активность микроорганизмов при температуре ниже минимальной прекращаются, гибели клеток не происходит, т.к. микроорганизмы переходят в состояние анабиоза (скрытой жизни) и остаются жизнеспособными длительное время. При повышении температуры клетки начинают интенсивно размножаться.

Лучистая энергия. В природе микроорганизмы постоянно подвергаются воздействию солнечной радиации.

Доза облучения, в свою очередь, определяется интенсивностью и временем воздействия. Кроме того, эффект воздействия лучистой энергии зависит от вида микроорганизма, характера   облучаемого   субстрата,   степени   обсемененности   его микроорганизмами, а также от температуры.

Низкие интенсивности видимого света (350–750 нм) и ультрафиолетовых лучей (150–300 нм), а также низкие дозы ионизирующих излучений либо не влияют на жизнедеятельность микроорганизмов, либо приводят к ускорению их роста и стимуляции метаболических процессов, что связано с поглощением квантов света определенными компонентами или веществами клеток и переходом их в электронно-возбужденное состояние.

Более высокие дозы излучений вызывают торможение отдельных процессов обмена, а действие ультрафиолетовых и рентгеновских лучей может привести к изменению наследственных свойств микроорганизмов - мутациям,что широко используется для получения высокопродуктивных штаммов.

Гибель микроорганизмов под действием ультрафиолетовых лучей связана:

• с инактивацией клеточных ферментов;

• с разрушением нуклеиновых кислот;

• с образованием в облучаемой среде перекиси водорода, озона и т.д.

Следует  отметить,   что   наиболее  устойчивыми   к  действию ультрафиолетовых лучей являются споры бактерий, затем споры грибов и дрожжей, далее окрашенные (пигментированные) клетки бактерий. Наименее устойчивы вегетативные клетки бактерий.

Гибель микроорганизмов под действием ионизирующих излучений вызвана:

• радиолизом воды в клетках и субстрате. При этом образуются свободные радикалы, атомарный водород, перекиси, которые, вступая во взаимодействие с другими веществами клетки, вызывают большое количество реакций, не свойственных нормально живущей клетке;

• инактивацией ферментов,  разрушением мембранных структур, ядерного аппарата.

Радиоустойчивость различных микроорганизмов колеблется в широких пределах, причем микроорганизмы значительно радиоустойчивей высших организмов (в сотни и тысячи раз). Наиболее устойчивы к действию ионизирующих излучений споры бактерий, затем грибы и дрожжи и далее бактерии.Губительное действие ультрафиолетовых и рентгеновских γ-лучей используется на практике.      Ультрафиолетовыми лучами дезинфицируют воздух холодильных камер, лечебных и производственных помещений, используют бактерицидные свойства ультрафиолетовых лучей для дезинфекции воды.

Обработка пищевых продуктов низкими дозами гамма-излуче-ний называется радуризацией.

Электромагнитные колебания и ультразвук. Радиоволны - это электромагнитные волны, характеризующиеся относительно большой длиной (от миллиметров до километров) и частотами от 3·104 до 3·1011 герц.

Прохождение коротких и ультрарадиоволн через среду вызывает возникновение в ней переменных токов высокой (ВЧ) и сверхвысокой частоты (СВЧ). В электромагнитном поле электрическая энергия преобразуется в тепловую. Гибель микроорганизмов в электромагнитном поле высокой интенсивности наступает в результате теплового эффекта, но полностью механизм действия СВЧ-энергии на микроорганизмы не раскрыт. В последние годы сверхвысокочастотная электромагнитная обработка пищевых продуктов все более широко применяется в пищевой промышленности (для варки, сушки, выпечки, разогревания, размораживания, пастеризации и стерилизации пищевых продуктов). По сравнению с традиционным способом тепловой обработки время нагревания СВЧ-энергией до одной и той же температуры сокращается во много раз, в связи с чем полнее сохраняются вкусовые и питательные свойства продукта.

Ультразвук. Ультразвуком называют механические колебания с частотами более 20 000 колебаний в секунду (20 кГц).

Природа губительного действия ультразвука на микроорганизмы связана:

• с кавитационным эффектом. При распространении в жидкости УЗ-волн происходит быстро чередующееся разряжение и сжатие частиц жидкости. При разряжении в среде образуются мельчайшие полые пространства – «пузырьки», заполняющиеся парами окружающей среды и газами. При сжатии, в момент захлопывания кавитационных «пузырьков», возникает мощная гидравлическая ударная волна, вызывающая разрушительное действие;

• с электрохимическим действием УЗ-энергии. В водной среде происходит ионизация молекул воды и активация растворенного в ней кислорода. При этом  образуются  вещества,  обладающие  большой  реакционной способностью, которые обуславливают ряд химических процессов, неблагоприятно действующих на живые организмы.

Влажность среды оказывает большое воздействие на жизнедеятельность микроорганизмов. Вода входит в состав клеток и поддерживает тургорное давление в них.Питательные вещества проникают внутрь клетки лишь в растворенном состоянии. Обезвоживание субстрата приводит к задержке развития микроорганизмов (состояние анабиоза). При повышении влажности жизнедеятельность МО восстанавливается.Микроорганизмы в зависимости от отношения к влажности делятся на гидрофиты (влаголюбивые), ксерофиты (сухолюбивые) и мезофиты (средневлаголюбивые). Для большинства бактерий минимальная влажность субстрата 20–30%, а для грибов – 11–13%.

Для развития микроорганизмов важна не абсолютная величина влажности, а ее доступность. Доступность содержащейся в субстрате влаги носит название активность воды (аw). Этот показатель выражает отношение давления паров над субстратом (Рс) к давлению паров над чистой водой (Р) при одной и той же температуре:

Осмотическое давление (концентрация растворенных веществ в среде). Осмотическое давление внутри клеток микроорганизмов несколько выше, чем в среде. Это является условием нормальной жизнедеятельности микроорганизмов. 
Осморегуляция – поддержание клетками оптимального для данного микроорганизма осмотического давления. Функцию осморегуляции осуществляет механизм активного транспорта веществ При попадании микроорганизма в субстрат с ничтожно малой концентрацией растворенных веществ (например, в дистиллированную воду) в клетках наблюдается плазмоптис (чрезмерное насыщение цитоплазмы водой), что может привести к разрыву цитоплазматической мембраны и гибели микроорганизма. При попадании микроорганизма в субстрат с концентрацией веществ выше оптимальных значений наступает плазмолиз – обезвоживание цитоплазмы (в сост.анабиоза).

Влияние концентрации водородных ионов (рН среды)на три группы: 
• нейтрофилы – предпочитают нейтральную реакцию среды. Растут в диапазоне значений рН от 4 до 9. К нейтрофилам относятся большинство бактерий, в том числе гнилостные бактерии; 
• ацидофилы (кислотолюбивые). Растут при рН 4 и ниже. К ацидофилам относятся молочнокислые, уксуснокислые бактерии, грибы и дрожжи. 
• алкалофилы (щелочелюбивые). К этой группе относятся микроорганизмы, которые растут и развиваются при рН 9 и выше. Примером алкалофилов является холерный вибрион. 
Если рН не соответствует оптимальной величине, то микроорганизмы не могут нормально развиваться, так как активная кислотность оказывает влияние на активность ферментов клетки и проницаемость цитоплазматической мембраны. 
Некоторые микроорганизмы, образуя продукты обмена и выделяя их в среду, способны изменять реакцию среды. 
Для бактерий кислая среда более опасна, чем щелочная (особенно для гнилостных бактерий). Это используется для консервирования продуктов путем маринования или квашения. При мариновании к продуктам добавляют уксусную кислоту, при квашении создаются условия для развития молочнокислых бактерий, которые образуют молочную кислоту и тем самым способствуют подавлению роста гнилостных бактерий.

Химические вещества. Многие химические вещества действуют губительно на микроорганизмы. Такие вещества называют антисептиками. Их действие зависит от концентрации и продолжительности воздействия, а также от рН среды и температуры. 
Из неорганических соединений наиболее сильно действуют на микроорганизмы соли тяжелых металлов (золота, меди и особенно серебра). Например, ионы серебра адсорбируются на поверхности клетки, вызывая изменения свойств и функций цитоплазматической мембраны. 
Бактерицидным действием обладают многие окислители (хлор, йод, перекись водорода, калий марганцево-кислый), минеральные соли (сернистая, борная, фтористо-водородная). Эти вещества вызывают активные окислительные процессы, не свойственные метаболизму клетки, а также разрушают ферменты. 
Органические соединения (формалин, фенол, карболовая кислота, спирты, органические кислоты – салициловая, уксусная, бензойная, сорбиновая) также могут губительно воздействовать на микроорганизмы.

 

 

 


Информация о работе Взаимосвязь между микроорганизмами и средой. Классификация факторов воздействия на микроорганизмы