Современные методы и проблемы диагностики наследственной патологии

Автор работы: Пользователь скрыл имя, 30 Марта 2013 в 18:01, реферат

Краткое описание

Одной из наиболее актуальных проблем современной медицинской генетики является определение этиологии и патогенеза наследственных заболеваний. Цитогенетические и молекулярные исследования имеют высокую диагностическую информативность и ценность при решении данной проблемы, так как хромосомные аномалии встречаются с частотой от 4 до 34% при различных наследственных синдромах. В последние годы появились новые методы цитогенетических и молекулярно-цитогенетических исследований, значительно расширяющие диагностические возможности при заболеваниях, сопровождающихся различными хромосомными нарушениями. Данный обзор посвящен вопросам выбора необходимых цитогенетических или молекулярно-генетических анализов при различных формах генетических синдромов.

Содержание

Введение
Глава 1. Современные методы и проблемы диагностики наследственной патологии
1.1 Современные представления о наследственных заболеваниях
1.2 Геномный импринтинг
1.3 Болезни импринтинга4
Глава 2. Характеристика синдромов Прадера-Вилли и Ангельмана
2.1 Цитогенетическая характеристика синдромов Прадера-Вилли и Ангельмана
2.2 Клинические проявления и методы диагностики синдромов Прадера-Вилли и Ангельмана
2.3 Связь синдромов Прадера-Вилли и Ангельмана
Глава 3. Синдром Ди Джорджи (Ди Георга)
Заключение
Список использованной литературы

Прикрепленные файлы: 1 файл

мбг 5.doc

— 154.50 Кб (Скачать документ)

ПЛАН

Введение

Глава 1. Современные методы и проблемы диагностики наследственной патологии

1.1 Современные  представления о наследственных  заболеваниях     

1.2 Геномный  импринтинг

1.3 Болезни  импринтинга4

Глава 2. Характеристика синдромов  Прадера-Вилли и Ангельмана

2.1 Цитогенетическая  характеристика синдромов Прадера-Вилли  и Ангельмана

2.2 Клинические  проявления и методы диагностики  синдромов Прадера-Вилли и Ангельмана

2.3 Связь  синдромов Прадера-Вилли и Ангельмана

Глава 3. Синдром Ди Джорджи (Ди Георга)

Заключение

Список  использованной литературы

 

 

 

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

Одной из наиболее актуальных проблем современной  медицинской генетики является определение  этиологии и патогенеза наследственных заболеваний. Цитогенетические и молекулярные исследования имеют высокую диагностическую информативность и ценность при решении данной проблемы, так как хромосомные аномалии встречаются с частотой от 4 до 34% при различных наследственных синдромах. В последние годы появились новые методы цитогенетических и молекулярно-цитогенетических исследований, значительно расширяющие диагностические возможности при заболеваниях, сопровождающихся различными хромосомными нарушениями. Данный обзор посвящен вопросам выбора необходимых цитогенетических или молекулярно-генетических анализов при различных формах генетических синдромов.

В работе рассматриваются  генетические заболевания, вызванные  микроделециями хромосом. На примере  наследственных заболеваний (синдромах  Прадера-Вилли, Ангельмана, Ди Джорджи) будет изучено явление геномного импринтинга, влияние которого ученые изучают и сейчас, так как до конца механизм геномного импринтинга пока не известен. Будут рассмотрены возможные варианты медицинской помощи при данных заболеваниях и риски дальнейших проявлений этих заболеваний в семьях, где встречаются такие патологии. Изучение этой проблемы на сегодня является актуальной.

Целью работы является: изучение цитогенетических и клинических  проявлений микроделяционных синдромов  Прадера-Вилли, Ангельмана и Ди Джорджи.

ГЛАВА 1. СОВРЕМЕННЫЕ МЕТОДЫ И ПРОБЛЕМЫ ДИАГНОСТИКИ НАСЛЕДСТВЕННОЙ ПАТОЛОГИИ

1.1 Современные  представления о наследственных  заболеваниях

Одной из наиболее актуальных проблем современного здравоохранения  является организация медико-генетической помощи семьям, где встречаются случаи рождения детей с наследственными заболеваниями. Актуальность этой проблемы определяется широким распространением данной патологии, трудностью дифференциальной диагностики большого количества наследственных болезней, проявляющихся множественными аномалиями развития с высоким риском повторения заболевания в семье.

В настоящий  момент появились новые методы цитогенетического  и молекулярно-цитогенетического  исследований, значительно расширяющие спектр современных диагностических возможностей. К этим методам можно отнести FISH-метод, основанный на гибридизации флюоресцентно меченных ДНК-зондов на разные участки генома; сравнительную геномную гибридизацию; метод спектрального кариотипирования; праймерное исследование in situ и др. В связи с разнообразием современных цитогенетических методов в литературе широко обсуждается вопрос о выборе необходимого цитогенетического или молекулярно-генетического анализа для установления диагноза при задержках психического развития и умственной отсталости [4].

Многочисленные  сообщения последних лет свидетельствуют о существенной роли субтеломерных перестроек в генезе недифференцированной умственной отсталости. Показано, что субтеломерные регионы хромосом насыщены генами, и мутации в них могут приводить к генетическим нарушениям. В настоящий момент анализ субтеломерных перестроек, проводимый различными методами, был выполнен во многих выборках пациентов с наследственными заболеваниями, у которых было выражено отставание в развитии. Фактически субмикроскопические субтеломерные хромосомные аномалии были обнаружены у 6,5-7,4% детей с умеренной и тяжелой умственной отсталостью [16, 17] и у 10,3% детей с легкой умственной отсталостью. Благодаря этим исследованиям были описаны следующие формы патологии:

- субмикроскопическая  терминальная делеция 8pter, связанная с транслокацией t(8;20), приводящая к психическим и поведенческим проблемам;

- терминальная  делеция хромосомы 5р у пациента  с фенотипическими проявлениями  синдрома Lujan-Fryns;

- тандемная  транслокация 22/15 с делецией района 22q13.3 и сохранением района ядрышкового организатора хромосомы у пациента с задержкой психомоторного и речевого развития и гипотонией, без каких-либо дисморфологических особенностей;

- делеция района 22q13 у пациентов с задержкой  психомоторного развития и речи, гипотонией и незначительными малыми аномалиями;

- делеция 16р,  возникшая de novo, сочетающаяся с  гипотонией и неспецифическими  аномалиями; - субтеломерная делеция  вследствие семейной сбалансированной  транслокации t(3;16) (q29; р13.3), сегрегирующей  в двух поколениях;

- делеция района 1р36.3 (выполнен комплексный геномный  анализ карт сцепления) [2, 4]. Данная  хромосомная аномалия может быть  связана с гипотонией, аномалиями  роста, характерным лицевым фенотипом  (выпуклый лоб, глубоко посаженные  глаза, плоская переносица, гипоплазия средней трети лица и выступающий подбородок), кардиомиопатией, расширением желудочков мозга, гипоплазией мозолистого тела, лейкодистрофией, психическими расстройствами [4].

Таким образом, для выявления генетических патологий, в настоящее время, стали широко использовать не только цитогенетические, но и молекулярно-цитогенетические методы исследований. Это позволяет более полно изучить проблемы наследственных заболеваний.

1.2 Геномный  импринтинг

В середине XIX в. Грегор Мендель в своих опытах по скрещиванию гороха сделал наблюдение, которое впоследствии стало настоящей аксиомой для генетиков. Он обнаружил, что, если скрестить гомозиготное растение, имеющее гладкие семена, и гомозиготное растение с морщинистыми семенами, в потомстве все растения будут одинаковыми и дадут только гладкие семена. Этот результат не зависел от того, у какого из растении, взятых для скрещивания, - мужского или женского - семена были гладкими. Так Мендель открыл принцип эквивалентности реципрокных скрещиваний: у потомства ген действует одинаково независимо от того, от кого из родителей он унаследован.

Недавно генетики и эмбриологи описали третье исключение — это геномный импринтинг, когда  оба родителя передают потомкам совершенно идентичные гены, но эти гены несут специфический отпечаток пола родителей, т.е. отцовские и материнские гены активированы или супрессированы во время гаметогенеза по-разному. Таким образом, в некоторых случаях важно, от кого из родителей унаследован ген [1]. Суть геномного импринтинга заключается в том, что гены, передаваемые потомству, несут специфический «отпечаток» пола родителя, т.е. отцовские и материнские гены маркированы по-разному; причем эти «отпечатки» временные и могут быть «стерты». Вследствие геномного импринтинга потомки, получившие маркированные гены от матери, отличаются от тех, которые унаследовали такие гены от отца. Другими словами, в некоторых случаях важно, от которого из родителей унаследован ген [1, 3].

Многие исследователи  пытались установить молекулярную природу  геномного импринтинга, обеспечивающие его механизмы, а также число и функции маркируемых генов. Благодаря этому сделано несколько замечательных открытий, которые расширяют понимание ряда раковых и наследственных заболеваний, а также некоторых других патологий. Изучение геномного импринтинга, возможно, откроет что-то новое и в наследовании признаков, которые вполне удовлетворительно объясняются в рамках классической менделевской генетики [3].

Термин «импринтинг» (imprint — отпечаток) впервые предложил  в 1960 г. Х. Кроуз из Колумбийского университета США для описания селективной элиминации отцовских хромосом у насекомых. Геномный импринтинг называют эпигенетическим явлением, подчеркивая этим, что наследуются изменения генной активности, обусловленные родительским происхождением хромосом или их фрагментов, а не структурные перестройки генетического материала (мутации). Таким образом, в некоторых участках генома, подверженных геномному импринтингу, экспрессируется только один отцовский или материнский аллель, т.е. наблюдается моноаллельная экспрессия импринтированных генов (генов, которые дифференциально экспрессируются в зависимости от отцовского или материнского происхождения) в отличие от обычной диаллельной. Причем, если импринтирован материнский ген, то экспрессируется отцовский аллель и наоборот. Наличие такого способа регуляции работы генов свидетельствует о неэквивалентном вкладе родителей в функционирование генома потомков, а фенотипические признаки, контролируемые импринтированными локусами, могут появляться в результате не только мутаций генов, но и нарушения эпигенетической программы регуляции генной экспрессии [1].

Геномный импринтинг занимает особое место среди специфических  механизмов регуляции активности генов  на ранних стадиях развития, приводя  к различиям в экспрессии гомологичных материнских и отцовских аллелей. Первоначальный «отпечаток», созданный в половых клетках, служит основанием для дальнейших модификаций в результате взаимодействий между родительскими геномами и цитоплазматическими факторами яйцеклетки во время формирования пронуклеуса (автономное существование яйцеклетки и сперматозоида в зиготе). Последующие эпигенетические модификации могут привести к тому, что изменения в экспрессии генов будут стабильно передаваться в процессе развития клеточных поколений. Геномный импринтинг, например, может изменять дозу генов, контролирующих рост эмбриона, клеточную пролиферацию и дифференцировку [1].

Таким образом, геномный импринтинг состоит в том, что хромосомы половых клеток (сперматозоидов или яйцеклеток) индивида приобретают «отпечаток» его пола (рис. 2). Потомство получает один набор хромосом с отцовской маркировкой некоторых генов, а другой - с материнской. При образовании у потомка половых клеток прежний «отпечаток» стирается и эти гены маркируются в соответствии с полом данной особи.

Рис. 1 Геномный импринтинг у мышей

Рис. 2 Геномный импринтинг у человека

1.3 Болезни  импринтинга

Проявления  геномного импринтинга удивительным образом связаны с некоторыми заболеваниями человека. Неожиданно оказалось, что в природе уже существуют параллели тем экспериментальным состояниям, которые исследовали у мышей. Недавно Р. Николлс и его коллеги из Медицинской школы Гарвардского университета установили, что у многих больных с синдромов Прадера—Вилли обе хромосомы 15 унаследованы от матери [3].

Примером импринтинга  целого генома у человека является истинный пузырный занос, который возникает  при оплодотворении яйцеклетки, лишенной материнских хромосом, двумя сперматозоидами. Несмотря на наличие полноценного диплоидного набора, ранний эмбриогенез таких зигот протекает аномально: ткани собственно эмбриона вообще не формируются, однако бурно разрастается трофобласт. В случае двойного набора материнских хромосом развивается тератома — эмбриональная опухоль. Следовательно, у человека, как и у мыши, на ранних стадиях развития геном отца преимущественно обеспечивает развитие провизорных органов, а геном матери — эмбриональных структур. Только материнский или только отцовский геномы не в состоянии обеспечить нормальное развитие эмбриона [1, 3]Импринтированные гены и их транскрипты обнаружены на многих хромосомах человека — 1, 5, 6, 7, 11, 13, 15, 19, 20 и X. На хромосоме 7 мыши и хромосомах 1 и 15 человека найдены два больших кластера ортологичных импринтированных генов, т.е. эволюционно консервативных по статусу импринтинга. Идентифицированы гены с полиморфным импринтингом, т.е. с сочетанием моноаллельной экспрессии в одних тканях и диаллельной — в других. По-видимому, такая тканеспецифическая эпигенетическая модификация некоторых генов может быть одним из механизмов, обеспечивающих дифференциальную экспрессию генов клеток разных тканей в ходе развития [1].

Примеров заболеваний, в основе этиологии которых лежит  нарушение функции импринтированных участков генома, довольно много, поэтому можно говорить об особом классе заболеваний человека — «болезнях импринтинга», которых насчитывается уже более 30. Основные из них приведены в табл. 1.

Таблица 1Предполагаемые «болезни импринтинга» у человека

Заболевание

Хромосома

Происхождение

Синдром Адамса—Оливера.

 

Материнское

Болезнь Альцгеймера

 

Отцовское

Синдром Энжельмена

15

Материнское

Атопия

11

То же

Церебеллярная атаксия

 

Отцовское

Расщелина губы

 

То же

Врожденный  порок сердца

 

Материнское

Семейные опухоли  клубочков                         

11

Отцовское

Синдром ломкой хромосомы X                         

X

Материнское

Синдром Гольденхара

 

То же

Хорея Гентингтона

   

(ювенильная  форма)

4

Отцовское

Идиопатический  гипертрофически

   

субаортальный стеноз

 

То же

Злокачественная гипертермия                         

19

 

Миотоническая дистрофия

 

Материнское

(врожденная)

19

То же

Нарколепсия

» »

Дефекты невральной трубки

 

Отцовское

Нейрофиброматоз 1

17

Материнское

Нейрофиброматоз II

22

То же

Поликистоз  почек (два локуса)               

16  

Материнское и  отцовское

Поликистоз  яичников

 

Материнское

Синдром Прадера—Вилли

15

Отцовское

Псориаз  То же

   

Псевдопсевдогипопаратиреоз                    

20

Материнское

Спиноцеребеллярная  атаксия

 

Отцовское

Туберозный  склероз

 

Материнское

Синдром Видемана—Беквита                          

11

 

Билатеральная спорадическая

ретинобластома

13

» »

Агенезия почек, аномалии лица  

Синдром лицевых  аномалий,

микрокрании, аномалий респираторного

16

» »

тракта, гепатомегалии

14

Отцовское

Синдром Сильвера—Рассела

7                  

Материнское

Синдром умственной

отсталости, низкого  роста,

преждевременного  полового

созревания

14

То же

Информация о работе Современные методы и проблемы диагностики наследственной патологии