Автор работы: Пользователь скрыл имя, 30 Октября 2013 в 16:56, реферат
Целью работы было изучение состояния воды и гидрофобных взаимодействий в биоструктурах. Задача заключалась в подборке материалов к выполнению курсовой работы по биофизике. Вода — наиболее важный компонент в клетке. Она представляет среду, в которой функционируют биологические макромолекулы. Современные данные показывают, что вода принимает непосредственное участие в формировании структуры важнейших биополимеров, а также в процессах самосборки сложных надмолекулярных биоструктур. Актуальным вопросом являются структура воды и ее роль в формировании стабильной конформации макромолекул.
Введение 3
Основная часть 4
Заключение 8
Список использованной литературы 9
Содержание
Введение 3
Основная часть 4
Заключение 8
Список использованной литературы 9
Введение
Целью работы было изучение состояния воды и гидрофобных взаимодействий в биоструктурах. Задача заключалась в подборке материалов к выполнению курсовой работы по биофизике.
Вода —
наиболее важный компонент в
клетке. Она представляет среду,
в которой функционируют
Современные
данные показывают, что вода принимает
непосредственное участие в
Актуальным вопросом являются структура воды и ее роль в формировании стабильной конформации макромолекул.
Основная часть
Особенности строения воды
Вода - вещество, основной структурной единицей которого является молекула H2O, состоящая из одного атома кислорода и двух атомов водорода. Вода имеет структуру как бы равнобедренного треугольника: в вершине этого треугольника расположен атом кислорода, а в основании его — два атома водорода. Угол при вершине (угол 2α) составляет 104°27, а длина стороны (длина связей ОН) — 0,096 нм. Эти параметры относятся к гипотетическому равновесному состоянию молекулы воды без ее колебаний и вращений. Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах.
Свойства воды
Вода, окись водорода, H20, простейшее устойчивое в обычных условиях химическое соединение водорода с кислородом (11,19% водорода и 88,81% кислорода по массе). Вода – это бесцветная жидкость без запаха и вкуса (в толстых слоях имеет голубоватый цвет). Вода входит в состав всех живых организмов, причём в целом в них содержится лишь вдвое меньше воды, чем во всех реках Земли.
Вода, как один из основных компонентов биологических систем, обладает весьма необычными свойствами. В отличие от многих других жидкостей, для воды характерно увеличение объема при замерзании. При плавлении льда происходит уменьшение объема и при 4° С вода имеет максимальную плотность: при 273,15 К ρ = = 0,9167 • 103 кг • м-3, при 277,15 К ρ = 1 • 10-3 кг • м-3 . Вода имеет максимально высокие температуры плавления и кипения и большую теплоемкость (С = 75,3 Дж *моль-1. К-1). Все эти аномалии связаны со структурой воды. Каждая молекула воды может выступать донором и акцептором водородных связей.
Структура воды
Жидкая вода представляет собой систему с сильно развитыми водородными связями, свойства которой хорошо описываются непрерывной, или континуальной, моделью, где практически все молекулы воды в среднем образуют водородные связи. Однако водородные связи в воде характеризуются широким набором углов и длин. Это означает, что потенциальная энергия водородной связи является непрерывной функцией угла межмолекулярной водородной связи и геометрических характеристик молекул воды. Максимум функции распределения энергии водородной связи соответствует расстоянию между атомами кислорода R0-0=0,286 нм. В упорядоченной структуре водородные связи линейны и R0-0 сокращается до 0,275 нм.
Между внешними
парами электронов кислорода и протонами
соседних молекул воды возникают водородные
связи, играющие существенную роль в формировании
структуры всей массы жидкости. Каждая
молекула воды может участвовать в образовании
четырех таких связей: две из них образуются
за счет притяжения двух протонов данной
молекулы к электронным парам кислородного
атома двух соседних частиц, а две получаются
за счет притяжения протонов соседних
молекул к электронным парам атома кислорода
данной частицы. Таким образом, молекула
воды играет роль одновременно и донора,
и акцептора протона.
Структуры объединённых молекул воды, у которых имеются и положительные и отрицательные полюса называют кластерами, а отдельные молекулы воды - квантами.
Гидрофобное взаимодействие
ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ (от греч. hydor-вода и phobos-боязнь,страх), сильное притяжение в воде между неполярными частицами (молекулами,остатками сложных молекул, частицами дисперсной фазы и т. п.). Причина Г. в. - большая энергия водородной связи между молекулами воды, превосходящая энергию их взаимодействий с неполярными частицами. Термодинамическая невыгодность контакта воды с неполярными веществами (рассматриваемая как гидрофобность) и предопределяет сильное притяжение их молекул друг к другу.
Гидрофобные взаимодействия имеют в своей основе исключительно термодинамическую природу. Гидрофобные взаимодействия свойственны белкам и нуклеиновым кислотам. Согласно второму закону термодинамики энергия Гиббса (δG) только падает (δG ↓) или не изменяется (δG = const). δG = δН – Т δS
При попадании гидрофобного радикала R аминокислоты белка в кластерную структуру воды происходит разрушение клатратной структуры воды, что приводит к повышению энтропии (δS > 0) и, следовательно, к уменьшению свободной энергии системы (δG ↓). Однако разрушение структуры воды нарушает систему водородных связей между молекулами воды. Вместо водородных связей углеводороды способны образовывать только более слабые ван-дер-ваальсовы связи с водой. Это приводит к увеличению значений δG > 0, которые по абсолютной величине превышают отрицательный энтропийный вклад в изменение δG, т. е. δН > |Т δS|. Поэтому в целом δG повышается, что энергетически невыгодно, и приводит к выталкиванию гидрофобных радикалов аминокислот или углеводородов из водной фазы. Гидрофобные взаимодействия в целом стабилизируют макромолекулы, хотя детальная картина взаимодействий с водой в пределах макромолекулы значительно сложнее. Гидрофобные взаимодействия обеспечивают пространственную ориентацию молекулы биополимера.
Стабилизация биоструктур
Гидрофобные взаимодействия играют существенную роль в формировании биоструктур, представляя собой один из основных факторов их стабилизации. В самом деле, эффект взаимодействия полярных групп белка с полярными молекулами воды связан с преобладанием полярных аминокислотных остатков на поверхности белковой глобулы. Однако наряду с этим возможно и взаимодействие посредством водородных связей полярных пептидных связей (NH …OC), принадлежащих разным участкам цепи внутри глобулы. Так как энергия водородных связей между пепидными связями в белке и между ними и водой примерно одинакова, это должно было бы приводить к рыхлой структуре макромолекулы в водном растворе. Однако реально существующая структура упорядочена и компактна и, как можно заключить, в основном определяется именно гидрофобными взаимодействиями. Отдельные аминокислотные остатки различаются по своим гидрофобным свойствам и могут вести себя как полярные или неполярные соединения.
Заключение
Поставленные цели и задачи в работе выполнены. Было изучено состояние воды и гидрофобные взаимодействия в биоструктурах.
Структура водного окружения любого вещества (элемента) в биологической жидкости, будь то молекула белка, элементов крови, газа формируется его пространственной организацией. Любые динамические взаимодействия биообъекта с окружающей средой отражаются в перестройках гидратного окружения, что определяет способность молекул воды нести информацию о молекулярных механизмах работы объекта в целом.
На Земле нет других веществ, наделенных способностью быть жидкостью при температурах существования человека и при этом образовывать газ не только легче воздуха, но и способный возвращаться к её поверхности в виде осадков.
Список использованной литературы
Информация о работе Состояние воды и гидрофобные взаимодействия в биоструктурах