Проблема водного дефицита в биосфере

Автор работы: Пользователь скрыл имя, 23 Декабря 2010 в 11:33, реферат

Краткое описание

Около трети поверхности суши испытывает дефицит влаги (годовое количество осадков 250--500 мм), а половина этой площади крайне засушлива (годовые осадки ниже 250 мм и испаряемость более 1000 мм). Для развития растений существенно, чтобы осадки относительно равномерно распределялись во время периодов активного роста. Однако в районах неустойчивого увлажнения часто бывают засушливые периоды именно в летние месяцы.

Содержание

ВВЕДЕНИЕ: ПРОБЛЕМА ВОДНОГО ДЕФИЦИТА 2
ВЛИЯНИЕ НЕДОСТАТКА ВОДЫ НА РАСТЕНИЕ 4
ВЛИЯНИЕ ПЕРЕГРЕВА НА ФИЗИОЛОГИЧЕСКИЕ ПРОЦЕССЫ 5

ПРИСПОСОБЛЕНИЕ РАСТЕНИЙ К ЗАСУХЕ

Прикрепленные файлы: 1 файл

zasuxa.rtf

— 79.27 Кб (Скачать документ)

  СОДЕРЖАНИЕ

 

  ВВЕДЕНИЕ: ПРОБЛЕМА ВОДНОГО ДЕФИЦИТА                                             2 

  ВЛИЯНИЕ НЕДОСТАТКА ВОДЫ НА РАСТЕНИЕ                                             4

  ВЛИЯНИЕ ПЕРЕГРЕВА НА ФИЗИОЛОГИЧЕСКИЕ ПРОЦЕССЫ                5

 

  ПРИСПОСОБЛЕНИЕ РАСТЕНИЙ К ЗАСУХЕ                                                     6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  ВВЕДЕНИЕ: ПРОБЛЕМА ВОДНОГО ДЕФИЦИТА

Около трети поверхности суши испытывает дефицит влаги (годовое количество осадков 250--500 мм), а половина этой площади крайне засушлива (годовые осадки ниже 250 мм и испаряемость более 1000 мм). Для развития растений существенно, чтобы осадки относительно равномерно распределялись во время периодов активного роста. Однако в районах неустойчивого увлажнения часто бывают засушливые периоды именно в летние месяцы.

  Засуха возникает как результат достаточно длительного отсутствия дождей, сопровождается высокой температурой воздуха и солнечной инсоляцией. Чаще она начинается с атмосферной засухи, характеризующейся низкой относительной влажностью воздуха. При длительном отсутствии дождей к атмосферной засухе добавляется почвенная засуха в связи с уменьшением (исчезновением) доступной для растений воды в почве. Во время суховея (атмосферная засуха, сопровождаемая сильным ветром) почвенная засуха может не возникать. В условиях засухи растения испытывают значительный водный дефицит. 

  Развитие и выживание растений в любых условиях гораздо сильнее зависит от доступности воды, чем от какого-либо иного фактора внешней среды. Примерно '/з поверхности суши занимают области, где обнаруживается дефицит влаги; половина этой площади (около 12% поверхности Земли) является крайне засушливой. Районы с избытком осадков занимают менее 9% поверхности суши. Если годовые осадки превышают годовое испарение, то говорят о гумидной зоне, в обратном случае -- об арпдноп. Многие сельскохозяйственные районы расположены в аридных зонах, где земледелие возможно только благодаря искусственному орошению.

  На протяжении многих лет считалось доказанным, что в пересыхающей почве вода доступна растениям до тех пор, пока содержание влаги в ней не достигнет коэффициента устойчивого завядания, когда в почве остается недоступная растению вода. Согласно этой точке зрения физиологические процессы, рост и развитие растений на почве, подвергающейся иссушению, протекают нормально до достижения коэффициента завядания. Однако накоплено много данных, показывающих, что на обмен веществ, а следовательно, на рост и развитие растений влияет даже слабый водный дефицит. Такой внутренний водный дефицит возникает в тканях задолго до того, как содержание влаги в почве приблизится к уровню коэффициента завядания. 

  Растения, перенесшие только однократную сильную кратковременную засуху, так и не возвращаются к нормальному обмену веществ. Внутренний водный баланс растения зависит от комплекса факторов, связанных а) с самим растением (засухоустойчивость, глубина проникновения и ветвление корней, фаза развития); б) с количеством растений на данной площади; в) с климатическими факторами (потери воды на испарение и транспирацию, температура и влажность воздуха, туман, ветер и свет, количество осадков и т. д.); г) с почвенными факторами (количество воды в почве, осмотическое давление почвенного раствора, структура и влагоемкость почвы и др.).

Дефицит влаги в растениях действует на такие процессы, как поглощение воды, корневое давление, прорастание семян, устьичные движения, транспирация, фотосинтез,, дыхание, ферментативная активность растений, рост и развитие, соотношение минеральных веществ и др. Изменяя обмен веществ, недостаток воды влияет на продуктивность, вкус плодов, плотность древесины, длину и прочность волокна у хлопчатника и т.д

  Степень оводненности, необходимая для начала прорастания семян, сильно варьирует у разных видов. Между скоростью прорастания семян и скоростью поглощения воды существует определенная корреляция. На скорость прорастания влияют также свойства семян и водоудерживающая способность почвы.

  Влияние водного дефицита на метаболические процессы в значительной мере зависит от длительности его действия. При устойчивом завядании растений увеличивается скорость распада РНК, белков и одновременно возрастает количество небелковых азотсодержащих соединений и отток их в стебель и колос (у злаков). В результате в условиях засухи содержание белков в листьях относительно уменьшается, а в семенах -- увеличивается.

  Влияние водного дефицита на углеводный обмен выражается вначале в снижении содержания моно- и дисахаридов в фотосинтезирующих листьях из-за снижения интенсивности фотосинтеза, затем количество моносахаридов может возрастать как следствие гидролиза полисахаридов листьев нижних ярусов. При длительном водном дефиците наблюдается уменьшение количества всех форм Сахаров.

  Длительный водный дефицит снижает интенсивность фотосинтеза и, как следствие, уменьшает образование АТР в процессе фотосинтетического фосфорилирования. Под влиянием почвенной и атмосферной засухи тормозится также отток продуктов фотосинтеза из листьев в другие органы.

  В условиях оптимального водоснабжения наблюдается положительная корреляция между интенсивностью дыхания и количеством фосфорилированных продуктов. Водный дефицит по-разному сказывается на дыхании листьев разного возраста:

в молодых листьях содержание фосфорилированных продуктов резко падает, как и интенсивность дыхания, а у листьев, закончивших рост, эта разница четко не проявляется. При дефиците воды снижается дыхательный коэффициент.

Необходимо отметить, что в условиях водного дефицита верхние листья, в которых за счет некоторого усиления гидролитических процессов увеличивается содержание осмотически активных веществ, оттягивают воду от нижних листьев и дольше сохраняют ненарушенными синтетические процессы, а нижние листья в этих условиях засыхают раньше верхних; Очевидно, в аридных и близких к ним зонах для сельскохозяйственных культур важно знать физиологические показатели, характеризующие водный режим тканей, и, пользуясь ими, определять срок полива и его продолжительность.

  ВЛИЯНИЕ НЕДОСТАТКА ВОДЫ НА РАСТЕНИЕ

   Недостаток воды в тканях растений создается, когда расход воды при транспирации превышает ее поступление. Водный дефицит может возникнуть в жаркую солнечную погоду к середине дня, при этом увеличивается сосущая сила листьев, что активирует поступление воды из почвы. Растения регулируют уровень водного дефицита, меняя отверстость устьиц. Обычно при завядании листьев водный дефицит их восстанавливается в вечерние и ночные часы (временное завядание). Глубокое завядание наблюдается при отсутствии в почве доступной для растения воды. Это завядание чаще всего приводит растения к гибели.

  Характерный признак устойчивого водного дефицита -- сохранение его в тканях утром, а также прекращение выделения пасоки из срезанного стебля. Действие засухи в первую очередь приводит к уменьшению в клетках свободной воды, что изменяет гидратные оболочки белков цитоплазмы и сказывается на функционировании белков-ферментов. При длительном завядании снижается активность ферментов синтеза и активируются гидролитические процессы, в частности протеолиз, что ведет к увеличению содержания в клетках низкомолекулярных белков. В результате гидролиза полисахаридов в тканях накапливаются растворимые углеводы, отток которых из листьев замедлен. Под влиянием засухи в листьях снижается количество РНК вследствие уменьшения ее синтеза и активации ри-бонуклеаз. В цитоплазме наблюдается распад полирибосомных комплексов. Изменения, касающиеся ДНК, происходят лишь при длительной засухе. Из-за уменьшения свободной воды возрастает концентрация вакуолярного сока. Изменяется ионный состав клеток, облегчаются процессы выхода из них ионов.

  В большинстве случаев суммарный фотосинтез при недостатке влаги снижается, хотя иногда на начальных этапах обезвоживания наблюдается некоторое увеличение его интенсивности. Снижение скорости фотосинтеза может быть следствием: 1) недостатка СОз из-за закрывания устьиц, 2) нарушения синтеза хлорофиллов, 3) разобщения транспорта электронов и фотофосфорилирования, 4) изменений в фотохимических реакциях и реакциях восстановления СОз, 5) нарушения структуры хлоропластов, 6) задержки оттока ассимилятов из листьев при длительном водном дефиците.

При обезвоживании у растений, не приспособленных к засухе, значительно усиливается интенсивность дыхания (возможно, из-за большого количества субстратов дыхания -- Сахаров), а затем постепенно снижается. У засухоустойчивых растений в этих условиях существенных изменений дыхания не наблюдается или отмечается небольшое усиление.

  В условиях водного дефицита быстро тормозятся клеточное деление и особенно растяжение, что приводит к формированию мелких клеток. Вследствие этого задерживается рост самого растения, особенно листьев и стеблей. Рост корней в начале засухи даже ускоряется и снижается лишь при длительном недостатке воды в почве. Корни реагируют на засуху рядом защитных приспособлений: опробковением, суберинизацией экзодермы, ускорением дифференцировки клеток, выходящих из меристемы, и др.

  Таким образом, недостаток влаги вызывает значительные и постепенно усиливающиеся изменения большинства физиологических процессов у растений.

ВЛИЯНИЕ ПЕРЕГРЕВА НА ФИЗИОЛОГИЧЕСКИЕ ПРОЦЕССЫ

Во время засухи наряду с обезвоживанием происходит перегрев растений. При действии высоких температур (35 °С и выше) наблюдаются два типа изменения вязкости цитоплазмы: чаще увеличение, реже снижение. Возрастание вязкости цитоплазмы замедляет ее движение, но процесс обратим даже при 5-минутном воздействии температуры 51 °С. Высокая температура увеличивает концентрацию клеточного сока и проницаемость клеток для мочевины, глицерина, эозина и других соединений. В результате экзоосмоса веществ, растворенных в клеточном соке, постепенно снижается осмотическое давление. Однако при температурах выше 35 °С вновь отмечается рост осмотического давления из-за усиления гидролиза крахмала и увеличения содержания моносахаров. Как следует из рис. 14.2, у листьев традесканции выход электролитов индуцируется под влиянием температуры более высокой по сравнению с температурой, меняющей вязкость цитоплазмы и ее движение. При этом потеря свойства полупроницаемости тонопласта (оцениваемая по выходу антоциана) вызывается лишь кратковременным действием очень высоких температур (57--64°С).

  Процесс фотосинтеза более чувствителен к действию высоких температур, чем дыхание. Гидролиз полимеров, в частности белков, ускоряющийся при водном дефиците, значительно активируется при высокотемпературном стрессе. Распад белков идет с образованием аммиака, который может оказывать отравляющее действие на клетки у неустойчивых к перегреву растений. У жаростойких растений наблюдается увеличение содержания органических кислот, связывающих избыточный аммиак. Еще одним способом защиты от перегрева может служить усиленная транспирация, обеспечиваемая мощной корневой системой. В других случаях (суккуленты) жаростойкость определяется высокой вязкостью цитоплазмы и повышенным содержанием прочно связанной воды. При действии высоких температур в клетках растений индуцируется синтез стрессовых белков (белков теплового шока).

  В сельскохозяйственной практике для повышения жароустойчивости растений применяют внекорневую обработку 0,05%-ным раствором солей цинка.

  ПРИСПОСОБЛЕНИЕ РАСТЕНИЙ К ЗАСУХЕ

  Как уже отмечалось, неблагоприятное действие засухи состоит в том, что растения испытывают недостаток воды или комплексное влияние обезвоживания и перегрева. У растений засушливых месторбитаний -- ксерофитов -- выработались приспособления, позволяющие переносить периоды засухи.

Растения используют три основных способа защиты:

1) предотвращение излишней потери воды клетками (избегание высыхания), 2) перенесение высыхания, 3) избегание периода засухи. Наиболее общими являются приспособления для сохранения воды в клетках.

  Группа ксерофитов очень разнородна. По способности переносить условия засухи различают следующие их типы (по П. А. Генкелю):

  1. Суккуленты (по Н. А. Максимову -- ложные ксерофиты) -- растения, запасающие влагу (кактусы, алоэ, очиток, молодило, молочай). Вода концентрируется в листьях или стеблях, покрытых толстой кутикулой, волосками. Транспирация, фотосинтез и рост осуществляются медленно. Они плохо переносят обезвоживание. Корневая система распространяется широко, но на небольшую глубину.

  2. Несуккулентные виды по уровню транспирации делятся на несколько групп.

  а) Настоящие ксерофиты (эвксерофиты -- полынь, вероника беловойлочная и др.). Растения с небольшими листьями, часто опушенными, жароустойчивы, транспирация невысокая, способны выносить сильное обезвоживание, в клетках высокое осмотическое давление. )Корневая система сильно разветвлена, но на небольшой глубине.

Информация о работе Проблема водного дефицита в биосфере