Пластиды. Вегетативное размножение

Автор работы: Пользователь скрыл имя, 07 Января 2014 в 12:03, контрольная работа

Краткое описание

Хлоропласты отличаются зеленым цветом, который обусловлен пигментом — хлорофиллом, обеспечивающим процесс фотосинтеза, т. е. синтеза органических веществ из воды (Н2О) и углекислого газа (СО2) с использованием энергии солнечного света. Хлоропласты содержатся преимущественно в клетках листьев (у высших растений). Они сформированы двумя параллельно расположенными друг другу мембранами, окружающими содержимое хлоропластов — строму.

Содержание

1.Строение и функции пластид………………………………………………………..3
2.Размножение как одно из свойств живого организма. Вегетативное размножение………………………………………………………………………….13
Список использованной литературы………………………………………………19

Прикрепленные файлы: 1 файл

естествознание.docx

— 364.44 Кб (Скачать документ)

Содержание

 

1.Строение и функции пластид………………………………………………………..3

2.Размножение как одно из свойств живого организма. Вегетативное размножение………………………………………………………………………….13

Список использованной литературы………………………………………………19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Строение и  функции пластид 

В растительных клетках обнаруживаются особые органоиды — пластиды, имеющие  чаще веретеновидную или округлую форму, иногда более сложную. Различают  три вида пластид — хлоропласты (рис. 1), хромопласты и лейкопласты.

Хлоропласты отличаются зеленым цветом, который обусловлен пигментом — хлорофиллом, обеспечивающим процесс фотосинтеза, т. е. синтеза органических веществ из воды (Н2О) и углекислого газа (СО2) с использованием энергии солнечного света. Хлоропласты содержатся преимущественно в клетках листьев (у высших растений). Они сформированы двумя параллельно расположенными друг другу мембранами, окружающими содержимое хлоропластов — строму. Внутренняя мембрана образует многочисленные уплощенные мешочки — тилакоиды, которые сложены в стопки (наподобие стопки монет) — граны — и лежат в строме. Именно в тила-коидах и содержится хлорофилл.

Хромопласты определяют желтый, оранжевый и красный цвет многих цветков и плодов, в клетках которых присутствуют в большом количестве. Основными пигментами в их составе являются каротины. Функциональное назначение хромопластов состоит в цветовом привлечении животных, обеспечивающих опыление цветков и распространение семян.

 

 

Рис. 1. Пластиды: а — хлоропласты в клетках листа элодеи, видимые в световом микроскопе; б — схема внутреннего строения хлоропласта с гранами, представляющими собой стопки плоских мешочков, расположенных перпендикулярно поверхности хлоропласта; в — более подробная схема, на которой видны анастомозирующие трубочки, соединяющие отдельные камеры гран.

Лейкопласты - это бесцветные пластиды, содержащиеся в клетках подземных частей растений (например, в клубнях картофеля), семян и сердцевины стеблей. В лейкопластах, главным образом, происходит образование из глюкозы крахмала и накапливание его в запасающих органах растений.

Пластиды одного вида могут  превращаться в другой. Например, при  осеннем изменении цвета листьев  хлоропласты превращаются в хромопласты.

Принципиально важно, что пластиды растений — это органеллы, выполняющие в растительной клетке разнообразные функции. При этом функции пластид различны для клеток различных тканей. Безусловно, главнейшей функцией пластидной системы является фотосинтез, происходящий в хлоропластах.

Другая важнейшая функция пластид  — биосинтез многих соединений растительной клетки. Это связано с необходимостью компартментации в эукариотической клетке синтезируемых веществ. Растительная клетка в этом смысле имеет преимущества перед другими эукариотами, так как имеет два дополнительных компартмента — пластиды и вакуоли, которые используются клеткой весьма активно. В пластидах протекают промежуточные стадии многих метаболических процессов. Здесь у растений, помимо образования хлорофиллов и каротиноидов, синтезируются пурины и пиримидины, большинство аминокислот и все жирные кислоты (у животных эти процессы осуществляются в цитозоле). В пластидах также происходит восстановление ряда неорганических ионов — нитрита (NO2), который является продуктом цитозольного восстановления нитрата, и сульфата (SO4).

Пластиды — основное место запасания  железа: в них локализовано до 85 % фитоферрйтина. Пластидный компартмент образно можно назвать «фабрикой экологически вредных и энергоемких производств» растительной клетки, связанных с токсичными интермедиатами, свободнорадикальными процессами и высокими энергиями.

Особо следует отметить, что в  пластидах часто протекают синтезы, дублирующиеся в цитозоле. Например, в них обнаружен шикиматный путь синтеза ароматических соединений, который обеспечивает синтез фенольных соединений вплоть до образования флавоноидов. Аналогичный путь известен и в цитозоле, однако там работают другие изозимы (например, халконсинтазы). В пластидах обнаружен также новый путь синтеза изопреноидов.

Ферменты практически всех описанных  биосинтетических путей хлоропластов имеют ядерное кодирование и, следовательно, транспортируются в  пластиды из цитозоля, т. е. в данном случае пластиды используются для сегрегации биосинтетических путей.

Пластиды – это мембранные органоиды, встречающиеся у фотосинтезирующих  эукариотических организмов (высшие растения, низшие водоросли, некоторые одноклеточные организмы). Пластиды окружены двумя мембранами, в их матриксе имеется собственная геномная система, функции пластид связаны с энергообеспечением клетки, идущим на нужды фотосинтеза.

У высших растений найден целый  набор различных пластид (хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений  одного вида пластиды в другой. Основной структурой, которая осуществляет фотосинтетические процессы, является хлоропласт.

У высших растений также  встречается деление зрелых хлоропластов, но очень редко. Увеличение числа  хлоропластов и образование других форм пластид (лейкопластов и хромопластов) следует рассматривать как путь превращения структур-предшественников, пропластид. Весь же процесс развития различных пластид можно представить в виде монотропного (идущего в одном направлении) ряда смены форм: 
 
Многими исследованиями был установлен необратимый характер онтогенетических переходов пластид. У высших растений возникновение и развитие хлоропластов происходят через изменения пропластид. Пропластиды представляют собой мелкие (0,4-1 мкм) двумембранные пузырьки, не имеющие отличительных черт их внутреннего строения. Они отличаются от вакуолей цитоплазмы более плотным содержимым и наличием двух отграничивающих мембран, внешней и внутренней. Внутренняя мембрана может давать небольшие складки или образовывать мелкие вакуоли. Пропластиды чаще всего встречаются в делящихся тканях растений (клетки меристемы корня, листьев, в точки роста стеблей и др.). По всей вероятности, увеличение их числа происходит путем деления или почкования, отделения от тела пропластиды мелких двумембранных пузырьков.

Хлоропласты

Рис. 2. Хлоропласты.

Хлоропласты (рис.2) – это структуры, в которых происходят фотосинтетические процессы, приводящие в конечном итоге к связыванию углекислоты, к выделению кислорода и синтезу сахаров. структуры удлиненной формы с шириной 2-4 мкм и протяженностью 5-10 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм. у зеленых водорослей может быть по одному хлоропласту на клетку.

Обычно на клетку высших растений приходится в среднем 10-30 хлоропластов. Встречаются клетки с огромным количеством  хлоропластов. Например, в гигантских клетках палисадной ткани махорки  обнаружено около 1000 хлоропластов.

Хлоропласты представляют собой  структуры, ограниченные двумя мембранами – внутренней и внешней. Внешняя  мембрана, как и внутренняя, имеет  толщину около 7 мкм, они отделены друг от друга межмембранным пространством  около 20-30 нм. Внутренняя мембрана хлоропластов отделяет строму пластиды, аналогичную  матриксу митохондрий. В строме зрелого  хлоропласта высших растений видны  два типа внутренних мембран.

Это – мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков. 
Ламеллы стромы (толщиной около 20 мкм) представляют собой плоские полые мешки или же имеют вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно друг другу и не образуют связей между собой.

Кроме мембран стромы в  хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30 нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами.

Число тилакоидов на одну грану очень варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2 нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом, как бы связывают между собой отдельные граны хлоропласта. Однако полости камер тилакоидов всезда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы. Ламеллы стромы и мембраны тилакоидов образуются путем отделения от внутренней мембраны при начальных этапах развития пластид. 
В матриксе (строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.

Характерным для хлоропластов является наличие в них пигментов, хлорофиллов, которые и придают  окраску зеленым растениям. При  помощи хлорофилла зеленые растения поглощают энергию солнечного света  и превращают ее в химическую.

Геном пластид

Подобно митохондриям, хлоропласты  имеют собственную генетическую систему, обеспечивающую синтез ряда белков внутри самих пластид. В матриксе хлоропластов обнаруживаются ДНК, разные РНК и рибосомы. Оказалось, что  ДНК хлоропластов резко отличается от ДНК ядра. Она представлена циклическими молекулами длиной до 40-60 мкм, имеющими молекулярный вес 0,8-1,3х108 дальтон. В одном хлоропласте может быть множество копий ДНК. Так, в индивидуальном хлоропласте кукурузы присутствует 20-40 копий молекул ДНК. Длительность цикла и скорость репликации ядерной и хлоропластной ДНК, как было показано на клетках зеленых водорослей, не совпадают. ДНК хлоропластов не состоит в комплексе с гистонами. Все эти характеристики ДНК хлоропластов близки к характеристикам ДНК прокариотических клеток. Более того, сходство ДНК хлоропластов и бактерий подкрепляется еще и тем, что основные регуляторные последовательности транскрипции (промоторы, терминаторы) у них одинаковы. На ДНК хлоропластов синтезируются все виды РНК (информационная, трансферная, рибосомная). ДНК хлоропластов кодирует рРНК, входящую в состав рибосом этих пластид, которые относятся к прокариотическому 70S типу (содержат 16S и 23S рРНК). Рибосомы хлоропластов чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.

Так же как в случае хлоропластов мы вновь сталкиваемся с существованием особой системы синтеза белка, отличной от таковой в клетке.

Эти открытия вновь пробудили  интерес к теории симбиотического  происхождения хлоропластов. Идея о том, что хлоропласты возникли за счет объединения клеток-гетеротрофов с прокариотическими синезелеными водорослями, высказанная на рубеже XIX и XX вв. (А.С. Фоминцин, К.С.Мережковский) вновь находит свое подтверждение. В пользу этой теории говорит удивительное сходство в строении хлоропластов и синезеленых водорослей, сходство с основными их функциональными особенностями, и в первую очередь со способностью к фотосинтетическим процессам.

Известны многочисленные факты истинного эндосимбиоза синезеленых водорослей с клетками низших растений и простейших, где они функционируют и снабжают клетку-хозяина продуктами фотосинтеза. Оказалось, что выделенные хлоропласты могут также отбираться некоторыми клетками и использоваться ими как эндосимбионты. У многих беспозвоночных (коловратки, моллюски), питающихся высшими водорослями, которые они переваривают, интактные хлоропласты оказываются внутри клеток пищеварительных желез. Так, у некоторых растительноядных моллюсков в клетках найдены интактные хлоропласты с функционирующими фотосинтетическими системами, за активностью которых следили по включению С14О2.

Как оказалось, хлоропласты  могут быть введены в цитоплазму клеток культуры фибробластов мыши путем  пиноцитоза. Однако они не подвергались атаке гидролаз. Такие клетки, включившие зеленые хлоропласты, могли делиться в течение пяти генераций, а хлоропласты при этом оставались интактными и проводили фотосинтетические реакции. Были предприняты попытки культивировать хлоропласты в искусственных средах: хлоропласты могли фотосинтезировать, в них шел синтез РНК, они оставались интактными 100 ч, у них даже в течение 24 ч наблюдались деления. Но затем происходило падение активности хлоропластов, и они погибали.

Эти наблюдения и целый  ряд биохимических работ показали, что те черты автономии, которыми обладают хлоропласты, еще недостаточны для длительного поддержания  их функций и тем более для  их воспроизведения. 
В последнее время удалось полностью расшифровать всю последовательность нуклеотидов в составе циклической молекулы ДНК хлоропластов высших растений. Эта ДНК может кодировать до 120 генов, среди них: гены 4 рибосомных РНК, 20 рибосомных белков хлоропластов, гены некоторых субъединиц РНК-полимеразы хлоропластов, несколько белков I и II фотосистем, 9 из 12 субъединиц АТФ-синтетазы, части белков комплексов цепи переноса электронов, одной из субъединиц рибулозодифосфат-карбоксилазы (ключевой фермент связывания СО2), 30 молекул тРНК и еще 40 пока неизвестных белков. Интересно, что сходный набор генов в ДНК хлоропластов обнаружен у таких далеко отстоящих представителей высших растений как табак и печеночный мох. 
Основная же масса белков хлоропластов контролируется ядерным геномом. Оказалось, что ряд важнейших белков, ферментов, а соответственно и метаболические процессы хлоропластов находятся под генетическим контролем ядра. Так, клеточное ядро контролирует отдельные этапы синтеза хлорофилла, каротиноидов, липидов, крахмала. Под ядерным контролем находятся многие энзимы темновой стадии фотосинтеза и другие ферменты, в том числе некоторые компоненты цепи транспорта электронов. Ядерные гены кодируют ДНК-полимеразу и аминоацил-тРНК-синтетазу хлоропластов.

Под контролем ядерных  генов находится большая часть  рибосомных белков. Все эти данные заставляют говорить о хлоропластах, так же как и о митохондриях, как о структурах с ограниченной автономией. 
Транспорт белков из цитоплазмы в пластиды происходит в принципе сходно с таковым у митохондрий. Здесь также в местах сближения внешней и внутренней мембран хлоропласта располагаются каналообразующие интегральные белки, которые узнают сигнальные последовательности хлоропластных белков, синтезированных в цитоплазме, и транспортируют их в матрикс-строму.

Информация о работе Пластиды. Вегетативное размножение