Основные этапы и направления развития генетики

Автор работы: Пользователь скрыл имя, 04 Мая 2014 в 14:46, реферат

Краткое описание

Первые идеи о механизме наследственности высказали еще древнегреческие ученые Демокрит, Гиппократ, Платон, Аристотель. Автор первой научной теории эволюции Ж.-Б. Ламарк воспользовался идеями древнегреческих ученых для объяснения постулированного им на рубеже XVIII-XIX вв. принципа передачи приобретенных в течение жизни индивидуума новых признаков потомству. Ч. Дарвин выдвинул теорию пангенезиса, объяснявшую наследование приобретенных признаков. Законы наследственности, открытые Г. Менделем, заложили основы становления генетики как самостоятельной науки.

Прикрепленные файлы: 1 файл

генетика реферат.doc

— 540.00 Кб (Скачать документ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.1. Закон единообразия гибридов первого поколения (первый закон Менделя)

 

Для иллюстрации первого закона Менделя – закона единообразия первого поколения – воспроизведем опыты ученого по моногибридному скрещиванию растений гороха. Скрещивание двух организмов называют гибридизацией; потомство от скрещивания двух особей с различной наследственностью называют гибридным, а отдельную особь – гибридом. Моногибридным называют скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков. Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух вариантов одного признака, развитие которого обусловлено парой аллельных генов. Например, признак – цвет семян, взаимоисключающие варианты – желтый или зеленый. Все остальные признаки, свойственные данным организмам, во внимание не принимаются и в расчетах не учитываются.

Если скрестить растения гороха с желтыми и зелеными семенами, то у всех полученных в результате этого скрещивания потомков – гибридов – семена будут желтыми. Такая же картина наблюдается при скрещивании растений, имеющих гладкую и морщинистую форму семян, а именно у гибридов семена будут гладкими.

Следовательно, у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один. Второй признак как бы исчезает, не развивается. Преобладание у гибрида признака одного из родителей Г. Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным (от лат. dominantis – господствующий); противоположный, то есть подавляемый, признак – рецессивным (от лат. recessus – отступление, удаление). Доминантный признак принято обозначать прописной буквой, например «А». Рецессивный – строчной – «а».

Теперь можно сделать вывод: если в генотипе организма (зиготы) есть два одинаковых аллельных гена, то есть два абсолютно идентичных по последовательности нуклеотидов гена, такой организм называют гомозиготным. Организм может быть гомозиготным по доминантным (АА или ВВ) или по рецессивным генам (аа или bb). Если же аллельные гены отличаются друг от друга по последовательности нуклеотидов, например один из них доминантный, а другой рецессивный (Аа, Вb), такой организм носит название гетерозиготного.

Закон единообразия гибридов первого поколения – первый закон Менделя – называют также законом доминирования, так как все особи первого поколения имеют одинаковое проявление признака. Сформулировать его можно следующим образом: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей.

 

 

 

 

2.1.2. Закон расщепления (второй закон Менделя)

 

Этот закон называют законом (независимого) расщепления. Суть его состоит в следующем. Когда у организма, гетерозиготного по исследуемому признаку, формируются половые клетки – гаметы, то одна их половина несет один аллель данного гена, а вторая – другой. Поэтому при скрещивании таких гибридов F 1 между собой среди гибридов второго поколения F2 в определенных соотношениях появляются особи с фенотипами как исходных родительских форм , так и F 1.

В основе этого закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), которое обеспечивает образование у гибридов F 1 гамет двух типов, в результате чего среди гибридов F2 выявляются особи трех возможных генотипов в соотношении 1АА : 2 Аа : 1аа. Иными словами, «внуки» исходных форм – двух гомозигот, фенотипически отличных друг от друга, дают расщепление по фенотипу в соответствии со вторым законом Менделя.

Однако это соотношение может меняться в зависимости от типа наследования. Так, в случае полного доминирования выделяются 75% особей с доминантным и 25% с рецессивным признаком, т.е. два фенотипа в отношении 3:1. При неполном доминировании и кодоминировании 50% гибридов второго поколения (F2) имеют фенотип гибридов первого поколения и по 25% – фенотипы исходных родительских форм,  т .е . наблюдается расщепление 1 :2:1 .

2.1.3. Закон независимого комбинирования (наследования) признаков (третий закон Менделя)

 

Дигибридным называют скрещивание, при котором рассматривается наследование и производится точный количественный учет потомства по двум парам альтернативных признаков, а точнее, по взаимоисключающим вариантам обоих признаков.

Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, отличающиеся по двум генам, определяющим окраску семян (желтые и зеленые) и форму семян (гладкие и морщинистые). Доминантные признаки – желтая окраска (А) и гладкая форма (В) семян. Каждое растение образует один сорт гамет по изучаемым аллелям. При слиянии этих гамет все потомство будет единообразным.

При образовании гамет у дигибрида из каждой пары аллельных генов, расположенных в различных парах гомологичных хромосом, в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в первом делении мейоза ген А может с равной вероятностью попасть в одну гамету с геном В или с геном b. Точно так же как и ген а может объединиться в одной гамете с геном В или b. Поскольку в каждом организме образуется много половых клеток, в силу статистических закономерностей у гибрида – дигетерозиготного организма, образуются четыре сорта гамет в одинаковом количестве (по 25%): АВ, Аb, аВ, аb.

Во время оплодотворения каждая их четырех типов гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета. Над решеткой по горизонтали выписывают гаметы одного родителя, а по левому краю решетки по вертикали – гаметы другого родителя. В квадратики же вписывают генотипы зигот, образующихся при слиянии гамет (рис. 2). Легко подсчитать, что по фенотипу потомство делится на четыре группы в следующем отношении: 9 желтых гладких: 3 желтых морщинистых: 3 зеленых гладких: 1 желтая морщинистая. Если учитывать результаты расщепления по каждой паре призраков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение числа гладких к числу морщинистых для каждой пары равно 3:1. Таким образом, в дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещивании, то есть независимо от другой пары признаков.

При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают различные комбинации генов.

Независимое распределение признаков в потомстве и возникновение различных комбинаций генов, определяющее развитие этих признаков, при дигибридном скрещивании возможно лишь в том случае, если пары аллельных генов расположены в разных гомологичных хромосомах.

Теперь можно сформулировать третий закон Менделя: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

На законах Менделя основан анализ расщепления и в более сложных случаях – при различиях особей по трем, четырем и более парам признаков.

 

2.2.  Закон Томаса Моргана . Хромосомная теория наследственности

 

Дальнейшие исследования генетиков показали, что законы Менделя о независимом наследовании признаков при дигибридном скрещивании применимы лишь тогда, когда разные гены располагаются в разных парах гомологичных хромосом. В том случае, если два гена находятся в одной паре гомологичных хромосом, расщепление в потомстве гибридов будет другим.

У любого организма генов значительно больше, чем хромосом. Например, у человека имеется около миллиона генов, а хромосом всего 23 пары. Следовательно, в одной хромосоме размещается в среднем несколько тысяч генов. Гены, расположенные в одной хромосоме, называют сцепленными. Все гены этой хромосомы образуют группу сцепления, которая при мейозе обычно попадает в одну гамету.

Значит, гены, входящие в одну группу сцепления, не подчиняются закону независимого наследования, а при дигибридном скрещивании вместо ожидаемого расщепления по фенотипу в соотношении 9:3:3:1 дают соотношение 3:1, как при моногибридном скрещивании.

Закономерности сцепленного наследования были установлены американским биологом Томасом Морганом (1866-1945). В качестве объекта он использовал плодовую муху дрозофилу. У дрозофилы окраску тела и длину крыльев определяют следующие пары аллелей: А - серое тело, а - черное тело, В - длинные крылья, b - зачаточные крылья. Гены, отвечающие за окраску тела и длину крыльев, находятся в одной паре гомологичных хромосом и наследуются сцеплено.

При скрещивании дрозофилы с серым телом и длинными крыльями с дрозофилой, имеющей черное тело и зачаточные крылья, все гибриды первого поколения имели серую окраску тела и длинные крылья.

При дальнейшем скрещивании между собой гибридных мух первого поколения в F2 не произошло ожидаемого расщепления по фенотипу 9:3:3:1. Вместо этого в F2 были получены мухи с родительскими фенотипами в соотношении примерно 3:1. Появление в F2 двух фенотипов вместо четырех позволило сделать вывод, что гены окраски тела и длины крыльев дрозофил находятся в одной хромосоме. Так был установлен закон Т.Моргана: гены, расположенные в одной хромосоме, наследуются совместно - сцепленно, то есть наследуются преимущественно вместе.

Однако при дигибридном скрещивании при сцепленном наследовании признаков не всегда появляются особи только двух фенотипов. Иногда появляются особи еще двух фенотипов с новым сочетанием родительских признаков: серое тело - зачаточные крылья, черное тело - длинные крылья. Почему же нарушается сцепление генов и появляются особи с новыми фенотипами? Было установлено, что сцепление генов может быть полным и неполным.

   Полное сцепление наблюдается в том случае, если скрещиваются серый самец с длинными крыльями и самка с черным телом и зачаточными крыльями. Расщепление по фенотипу в этом случае будет 1:1, то есть наблюдается полное сцепление генов в одной хромосоме.

При скрещивании серой длиннокрылой самки с самцом, имеющим черное тело и зачаточные крылья, расщепление по фенотипу будет примерно 41,5:41,5:8,5:8,5, что характеризует неполное сцепление. Причина нарушения сцепления заключается в том, что в ходе мейоза происходит кроссинговер и гомологичные хромосомы обмениваются своими участками. В результате гены, расположенные в одной из гомологичных хромосом, оказываются в другой хромосоме. Возникают новые сочетания признаков.

У самцов дрозофил в мейозе кроссинговер не происходит, поэтому при скрещивании серого длиннокрылого самца дрозофилы с рецессивной самкой с черным телом и зачаточными крыльями сцепление будет полным.

 Неполное сцепление наблюдается  в том случае, если самка гетерозиготна, а самец гомозиготен. В данном  примере кроссинговер происходит примерно у 17% самок.

Таким образом, если не происходит перекреста хромосом и обмена генами, то наблюдается полное сцепление генов. При наличии кроссинговера сцепление генов бывает неполным. Благодаря перекресту хромосом возникают новые сочетания генов и признаков. Чем дальше друг от друга расположены гены в хромосоме, тем больше вероятность перекреста между ними и обмена участками хромосом.

Количество разных типов гамет будет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах: единице расстояния между генами, находящимися в одной хромосоме, соответствует 1% кроссинговера.

Результаты скрещивание дрозофил:

 а) Полное сцепление без кроссинговера 

 б) С частотой кроссинговера  равной 17 %

Результатом исследований Т.Х.Моргана стало создание им хромосомной теории наследственности:

1. Гены располагаются в хромосомах; различные хромосомы содержат  неодинаковое число генов, причем  набор генов каждой из негомологичных  хромосом уникален;

2. Каждый ген имеет определенное  место в хромосоме; в идентичных  местах гомологичных хромосом  находятся аллельные гены;

3. Гены расположены в хромосомах  в определенной последовательности;

4. Гены, локализованные в одной  хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

5. Сцепление генов может нарушаться  в процессе кроссинговера; это  приводит к образованию рекомбинантных  хромосом;

6. Частота кроссинговера является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;

7. Каждый вид имеет характерный  только для него набор хромосом – кариотип.

ЗАКЛЮЧЕНИЕ

В результате проделанной работы были рассмотрены основные этапы развития и законы генетики. При рассмотрении данного вопроса были решены следующие задачи:

- дана история развития генетики;

- рассмотрены законы Грегора  Менделя;

- проанализирован закон Томаса  Моргана.

Таким образом, Менделевская теория наследственности, т.е. совокупность представлений о наследственных детерминантах и характере их передачи от родителей к потомкам, по своему смыслу прямо противоположна доменделевским теориям, в частности теории пангенезиса, предложенной Дарвином. В соответствии с этой теорией признаки родителей прямо, т.е. от всех частей организма, передаются потомству. Поэтому характер признака потомка должен прямо зависеть от свойств родителя. Это полностью противоречит выводам, сделанным Менделем: детерминанты наследствен-ности, т.е. гены, присутствуют в организме относительно независимо от него самого. Характер признаков (фенотип) определяется их случайным сочетанием. Они не модифицируются какими-либо частями организма и находятся в отношениях доминантности-рецессивности. Таким образом, менделевская теория наследственности противостоит идее наследования приобретенных в течение индивидуального развития признаков.

Информация о работе Основные этапы и направления развития генетики