Автор работы: Пользователь скрыл имя, 25 Сентября 2012 в 19:25, доклад
Обмен веществ — это совокупность протекающих в живых организмах химических превращений, обеспечивающих их рост, развитие, процессы жизнедеятельности, воспроизведение потомства, активное взаимодействие с окружающей средой.
Во всех живых организмах, от самых примитивных до самых сложных, каким является человек, основа жизни — это обмен веществ и энергии. Благодаря ему каждый организм не только поддерживает своё существование, но развивается и растет. Обмен веществ определяет цикличность жизни: рождение, рост и развитие, старение и смерть.
Обмен веществ и энергии — совокупность процессов превращения веществ и энергии, происходящих в живых организмах, и обмен веществами и энергией между организмом и окружающей средой. Обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи, отличающих живое от неживого. В обмене веществ, или метаболизме, обеспеченном сложнейшей регуляцией на разных уровнях, участвует множество ферментных систем. В процессе обмена поступившие в организм вещества превращаются в собственные вещества тканей и в конечные продукты, выводящиеся из организма. При этих превращениях освобождается и поглощается энергия.
Клеточный метаболизм выполняет четыре основные специфические функции: извлечение энергии из окружающей среды и преобразование ее в энергию макроэргических (высокоэргических) соединений в количестве, достаточном для обеспечения всех энергетических потребностей клетки; образование из экзогенных веществ (или получение в готовом виде) промежуточных соединений, являющихся предшественниками высокомолекулярных компонентов клетки; синтез белков, нуклеиновых кислот,углеводов, липидов и других клеточных компонентов из этих предшественников; синтез и разрушение специальных биомолекул, образование и распад которых связаны с выполнением специфических функций данной клетки.
Для понимания сущности обмена веществ и энергии в живой клетке нужно учитывать ее энергетическое своеобразие. Все части клетки имеют примерно одинаковую температуру, т.е. клетка изотермична. Различные части клетки мало отличаются и по давлению. Это значит, что клетки не способны использовать в качестве источника энергии тепло, т.к. при постоянном давлении работа может совершаться лишь при переходе тепла от более нагретой зоны к менее нагретой. Т.о., живую клетку можно рассматривать как изотермическую химическую машину.
С точки зрения термодинамики живые организмы представляют собой открытые системы, поскольку они обмениваются с окружающей средой как энергией, так и веществом, и при этом преобразуют и то, и другое. Однако живые организмы не находятся в равновесии с окружающей средой и поэтому могут быть названы неравновесными открытыми системами. Тем не менее при наблюдении в течение определенного отрезка времени в химическом составе организма видимых изменений не происходит. Но это не значит, что химические вещества, составляющие организм, не подвергаются никаким превращениям. Напротив, они постоянно и достаточно интенсивно обновляются, о чем можно судить по скорости включения в сложные вещества организма стабильных изотопов и радионуклидов, вводимых в клетку в составе более простых веществ-предшественников. Кажущееся постоянство химического состава организмов объясняется так называемым стационарным состоянием, т.е. таким состоянием, при котором скорость переноса вещества и энергии из среды в систему точно уравновешивается скоростью их переноса из системы в среду. Т.о., живая клетка представляет собой неравновесную открытую стационарную систему.
В зависимости от того в какой форме клетки получают из окружающей среды углерод и энергию, их можно разделить на большие группы. По форме получаемого углерода клетки делят на аутотрофные — «сами себя питающие», использующие в качестве единственного источника углерода диоксид углерода (двуокись углерода, углекислый газ) СО2, из которого они способны строить все нужные им углеродсодержащие соединения, и на гетеротрофные — «питающиеся за счет других», не способные усваивать СО2 и получающие углерод в форме сравнительно сложных органических соединений, таких, например, как глюкоза. В зависимости от формы потребляемой энергии клетки могут быть фототрофами — непосредственно использующими энергию солнечного света, и хемотрофами — живущими за счет химической энергии, освобождающейся в ходе окислительно-восстановительных реакций Подавляющее большинство аутотрофных организмов является фототрофами. Это — зеленые клетки высших растений, сине-зеленые водоросли, фотосинтезирующие бактерии. Гетеротрофные организмы чаще всего ведут себя как хемотрофы. К гетеротрофам относятся все животные, большая часть микроорганизмов, нефотосинтезирующие клетки растений. Исключение составляет небольшая группа бактерий (водородные, серные, железные и денитрофицирующие), которые по форме используемой энергии являются хемотрофами, но в то же время источником углерода для них служит СО2, т.е. по этому признаку они должны быть отнесены к аутотрофам.
Гетеротрофные клетки, в свою очередь, можно разделить на два больших класса: аэробы, которые в качестве конечного акцептора электронов в цепи переноса электронов используют кислород, и анаэробы, где такими акцепторами являются другие вещества. Многие клетки — факультативные анаэробы — могут существовать как в аэробных, так и в анаэробных условиях. Другие клетки — облигатные анаэробы — совершенно не могут использовать кислород и даже гибнут в его атмосфере.
Рассматривая взаимоотношения организмов в биосфере в целом, можно заметить, что в смысле питания все они так или иначе связаны друг с другом. Это явление носит название синтрофии (совместного питания). Фототрофы и гетеротрофы взаимно питают друг друга. Первые, являясь фотосинтезирующими организмами, образуют из содержащегося в атмосфере СО2органические вещества (например, глюкозу) И выделяют в атмосферу кислород; вторые используют глюкозу и кислород в процессе свойственного им метаболизма и в качестве конечного продукта обмена веществ вновь возвращают в атмосферу СО2. Этот круговорот углерода в природе теснейшим образом связан с энергетическим циклом. Солнечная энергия преобразуется в ходе фотосинтеза в химическую энергию восстановленных органических молекул, которая используется гетеротрофами для покрытия своих энергетических потребностей. Химическая энергия, получаемая гетеротрофами, особенно высшими организмами, из окружающей среды, частично превращается непосредственно в тепло (поддержание постоянной температуры тела), а частично — в другие формы энергии, связанные с выполнением различного рода работы: механической (мышечное сокращение), электрической (проведение нервного импульса), химической (биосинтетические процессы, протекающие с поглощением энергии), работы, связанной с переносом веществ через биологические мембраны (железы, кишечник, почки и др.). Все эти виды работы суммарно могут быть учтены по теплопродукции.
Между
обменом веществ и обменом энер
Другим, не менее важным для живых организмов элементом, чем углерод, является азот. Он необходим для синтеза белков и нуклеиновых кислот. Главным резервом азота на Земле служит атмосфера, почти на 4/5 состоящая из молекулярного азота. Однако вследствие химической инертности атмосферного азота большинство живых организмов его не усваивают. Лишь азотфиксирующие бактерии обладают способностью восстанавливать молекулярный азот и таким образом переводить его в связанное состояние. Связанный азот совершает беспрерывный круговорот в природе. Восстановленный азот, попадающий в почву в виде аммиака как продукт обмена веществ животных или образуемый азотфиксирующими бактериями, окисляется почвенными микроорганизмами до нитритов и нитратов, которые попадают из почвы в высшие растения, где восстанавливаются с образованием аминокислот, аммиака и ряда других азотсодержащих продуктов. Эти соединения попадают в организм животных, питающихся растительной пищей, затем в организм хищных животных, поедающих травоядных, и все еще в восстановленной форме возвращаются в ночву, после чего весь цикл повторяется снова.
Валовый (суммарный) обмен вещества и энергии. Законы сохранения вещества и энергии
послужили теоретической основой для разработки
важнейшего метода исследования обмена
веществ и энергии —установления балансов, т.е.
определения количестваэнергии и веществ,
поступающих в организм и покидающих его
в форме тепла и конечных продуктов обмена.
Для определения баланса веществ необходимы
достаточно точные химические методы
и знание путей, по которым различные вещества
выделяются из организма. Известно, что
главными пищевыми веществами являются
белки, липиды и углеводы. Как правило,
для оценки содержания белков в пище и
в продуктах распада достаточно определить количество
азота, т.к. практически весь азот пищи
находится в белках, в т.ч. в нуклеопротеинах;
незначительным количеством азота, входящим
в состав некоторых липидов и углеводов,
в опытах по определению азотистого баланса
можно пренебречь. Определение липидов
и углеводов в пищевых продуктах требует
специфических методов, что же касается
конечных продуктов обмена липидов и углеводов,
то это почти исключительно СО2 и
вода.