Нервная система

Автор работы: Пользователь скрыл имя, 15 Сентября 2014 в 16:30, реферат

Краткое описание

Нервная ткань выполняет функции восприятия, проведения и передачи возбуждения, полученного из внешней среды и внутренних органов, а также анализ, сохранение полученной информации, интеграцию органов и систем, взаимодействие организма с внешней средой.
Основные структурные элементы нервной ткани – клетки нейроны и нейроглия.

Содержание

1. Нейроны
1.1 Классификация нейронов
1.2 Синапсы
1.3 Классификация синапсов
1.4 Регенерация нейронов
2. Нейроглия
2.1 Макроглия
2.2 Микроглия
2.3 Нервные волокна
3. Заключение
4. Список литературы

Прикрепленные файлы: 1 файл

Нервная система.docx

— 957.73 Кб (Скачать документ)

Содержание

  1. Нейроны
    1. Классификация нейронов
    2. Синапсы
    3. Классификация синапсов
    4. Регенерация нейронов
  2. Нейроглия

2.1 Макроглия

2.2 Микроглия

2.3 Нервные волокна

3. Заключение

4. Список литературы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

НЕРВНАЯ ТКАНЬ

Нервная ткань выполняет функции восприятия, проведения и передачи возбуждения, полученного из внешней среды и внутренних органов, а также анализ, сохранение полученной информации, интеграцию органов и систем, взаимодействие организма с внешней средой.

Основные структурные элементы нервной ткани – клетки нейроны и нейроглия.

НЕЙРОНЫ

Нейроны состоят из тела (перикариона) и отростков, среди которых выделяют дендриты и аксон (нейрит). Дендритов может быть множество, аксон всегда один.

         Нейрон как любая клетка состоит  из 3 компонентов: ядра, цитоплазмы и  цитолеммы. Основной объём клетки приходится на отростки.

Ядро занимает центральное положение в перикарионе. В ядре хорошо развито одно или несколько ядрышек.

Плазмолемма принимает участие в рецепции, генерации и проведении нервного импульса.

Цитоплазма нейрона имеет различное строение в перикарионе и в отростках.

В цитоплазме перикариона находятся хорошо развитые органеллы: ЭПС, комплекс Гольджи, митохондрии, лизосомы. Специфичными для нейрона структурами цитоплазмы на светооптическом уровне являются хроматофильное вещество цитоплазмы и нейрофибриллы.

    Хроматофильное вещество цитоплазмы (субстанция Ниссля, тигроид, базофильное вещество) проявляется при окрашивании нервных клеток основными красителями (метиленовым синим, толуидиновым синим, гематоксилином и т.д.) в виде зернистости – это скопления цистерн грЭПС. Эти органеллы отсутствуют в аксоне и в аксонном холмике, но имеются в начальных сегментах дендритов. Процесс разрушения или распада глыбок базофильного вещества называется тигролизом и наблюдается при реактивных изменениях нейронов (например, при их повреждении) или при их дегенерации.

Нейрофибриллы – это цитоскелет, состоящий из нейрофиламентов и нейротубул, формирующих каркас нервной клетки. Нейрофиламенты представляют собой промежуточные филаменты диаметром 8-10 нм, образованные фибриллярными белками. Основной функцией этих элементов цитоскелета является опорная – для обеспечения стабильной формы нейрона. Подобную же роль играют тонкие микрофиламенты (поперечный диаметр 6-8 нм), содержащие белки актины. В отличие от микрофиламентов в других тканях и клетках, они не соединяются с микромиозинами, что делает невозможным активные сократительные функции в зрелых нервных клетках.

 

Нейротубулы по основным принципам своего строения фактически не отличаются от микротрубочек. Они, как и все микротрубочки имеют поперечный диаметр около 24 нм, кольца замыкают 13 молекул глобулярного белка тубулина. В нервной ткани микротрубочки выполняют очень важную, если не сказать уникальную роль. Как и всюду они несут каркасную (опорную) функцию, обеспечивают процессы циклоза. Микротрубки полярны. Именно полярность микротрубки, в которой имеется отрицательно и положительно заряженные концы, позволяет контролировать диффузионно-транспортные потоки в аксоне (так называемый быстрый и медленный аксоток). Их подробное описание приведем ниже.

Кроме этого, в нейронах довольно часто можно видеть липидные включения (зерна липофусцина). Они характерны для старческого возраста и часто появляются при дистрофических процессах. У некоторых нейронов в норме обнаруживаются пигментные включения (например, с меланином), что обуславливает окрашивание нервных центров, содержащих подобные клетки (черная субстанция, голубоватое пятно).

Нейроны в энергетическом отношении крайне зависимы от аэробного фосфорилирования и во взрослом состоянии фактически не способы к анаэробному гликолизу. В связи с этим нервные клетки находятся в выраженной зависимости от поступления кислорода и глюкозы и при нарушении кровотока нервные клетки практически сразу прекращают свою жизнедеятельность. Момент прекращения кровотока в головном мозге означает  начало клинической смерти. При мгновенной смерти, при комнатной температуре, и нормальной температуре тела процессы саморазрушения в нейронах обратимы в течение 5-7 минут. Это и является сроком клинической смерти, когда возможно оживление организма. Необратимые изменения в нервной ткани приводят к переходу от клинической смерти к биологической.

В теле нейронов можно видеть также транспортные пузырьки, часть из которых содержит медиаторы и модуляторы. Они окружены мембраной. Их размеры и строение зависят от содержания того или иного вещества.

Дендриты – короткие отростки, нередко сильно ветвятся. Дендриты в начальных сегментах содержат органеллы подобно телу нейрона. Хорошо развит цитоскелет.

 

Аксон (нейрит) чаще всего длинный, слабо ветвится или не ветвится. В нем отсутствует грЭПС. Микротрубочки и микрофиламенты располагаются упорядочено. В цитоплазме аксона видны митохондрии, транспортные пузырьки. Аксоны в основном миелинизированы и окружены отростками олигодендроцитов в ЦНС, или леммоцитами в периферической нервной системе. Начальный сегмент аксона нередко расширен и имеет название аксонного холмика, где происходит суммация поступающих в нервную клетку сигналов, и если возбуждающие сигналы достаточной интенсивности, то в аксоне формируется потенциал действия и возбуждение направляется вдоль аксона, передаваясь на другие клетки (потенциал действия).

         Аксоток (аксоплазматический транспорт веществ). Нервные волокна имеют своеобразный  структурный аппарат – микротрубочки, по которым перемещаются вещества от тела клетки на периферию (антероградный аксоток) и от периферии к центру (ретроградный аксоток).

Различают быстрый (со скоростью 100-1000 мм/сут.) и медленный (со скоростью 1-10 мм/сут.) аксоток. Быстрый аксоток – одинаков для различных волокон; требует значительной концентрации АТФ; происходит с участием  транспортных пузырьков. Он осуществляет транспорт медиаторов и модуляторов. Медленный аксоток – за счет него от центра к периферии распространяются биологически активные вещества, а также компоненты мембран клеток и белков.

Нервный импульс передаётся по мембране нейрона в определённой последовательности: дендрит – перикарион – аксон.

Классификация нейронов

По морфологии (по количеству отростков) выделяют:

- мультиполярные нейроны (г) — с множеством отростков (их большинство у человека),

- униполярные нейроны (а) — с одним аксоном,

- биполярные нейроны (б) —  с одним аксоном и одним  дендритом (сетчатка глаза, спиральный  ганглий).

- ложно- (псевдо-) униполярные нейроны (в) – дендрит и аксон отходят от нейрона в виде одного отростка, а затем разделяются (в спинномозговом ганглии). Это вариант биполярных нейронов.

2. По функции (по расположению  в рефлекторной дуге) выделяют:

- афферентные (чувствительные) нейроны (стрелка слева) – воспринимают  информацию и передают ее в  нервные центры. Типичными чувствительными  являются ложноуниполярные и биполярные нейроны спинномозговых и черепно-мозговых узлов;

- ассоциативные (вставочные) нейроны осуществляют взаимодействие  между нейронами, их большинство  в ЦНС;

- эфферентные (двигательные) нейроны (стрелка справа) генерируют  нервный импульс и передают  возбуждение другим нейронам  или клеткам других видов тканей: мышечным, секреторным клеткам.

Синапсы

    Синапсы – это специфические контакты нейронов, обеспечивающие передачу возбуждения от одной нервной клетки к другой. В зависимости от способов передачи возбуждения выделяют химические  и электрические синапсы.

Эволюционно более древними и примитивными являются электрические синаптические контакты. Они по строению близки к щелевидным контактам (нексусам). Считается, что обмен происходит в обе стороны, но имеются случаи, когда возбуждение передаются в одном направлении. Такие контакты часто встречаются у низших беспозвоночных и хордовых. У млекопитающих электрические контакты имеют большое значение в процессе межнейронных взаимодействий в эмбриональном периоде развития. Подобный вид контактов у взрослых млекопитающих имеет место в ограниченных участках, например их можно видеть в мезэнцефалическом ядре тройничного нерва.

Химические синапсы. Химические синапсы для передачи возбуждения от одной нервной клетки к другой используют специальные вещества – медиаторы, от чего и получили свое название. Кроме медиаторов ими используются и модуляторы. Модуляторы это специальные химические вещества, которые сами возбуждения не вызывают, но могут либо усиливать, либо ослаблять чувствительность к медиаторам (то есть модулировать пороговую чувствительность клетки к возбуждению).

Химический синапс обеспечивает однонаправленную передачу возбуждения. Строение химического синапса:

1)      Пресинаптическая зона – пресинаптическое расширение, наиболее часто представляющее собой терминаль аксона, в котором содержатся синаптические пузырьки, элементы цитоскелета (нейротубулы и нейрофиламенты), митохондрии;

2)      Синаптическая щель, которая принимает медиаторы из пресинаптической зоны;

3)      Постсинаптическая  зона – это электронноплотное вещество с рецепторами к медиатору на мембране другого нейрона.

Классификация синапсов:

1. В зависимости от  того, какие структуры двух нейронов  взаимодействуют в синапсе, можно  выделить:

-       аксо-дендритические (пресинаптическая структура аксон, постсинаптическая — дендрит);

-       аксо-аксональные;

-       аксо-соматические.

2. По функции выделяют:

- возбуждающие синапсы, которые  приводят к деполяризации постсинаптической  мембраны и активации нервной  клетки;

- тормозные синапсы, которые  приводят к гиперполяризации мембраны, что снижает пороговую чувствительность нейрона к внешним влияниям.

3. По основному медиатору, содержащемуся в синаптических пузырьках, синапсы делятся на группы:

Холинергические (ацетилхолинергические): возбуждающие и тормозные;

Адренергические (моноаминергические, норадренергические, дофаминергические): в основном, возбуждающие, но есть и тормозные;

Серотонинергические (иногда приписываются к предыдущей группе): возбуждающие;

ГАМК-ергические (медиатор гаммааминомаслянная кислота): тормозные;

Пептидергические (медиаторы – большая группа вешеств, в основном: вазоинтерстициальный полипептид, вазопрессин, вещество Р (медиатор боли), нейропептид Y, окситоцин, бета-эндорфин и энкефалины (противоболевые), динорфин и т.д.).

Синаптические пузырьки отделены от гиалоплазмы одной мембраной. Холинсодержащие пузырьки электронносветлые, диаметром 40-60 мкм. Адренсодержащие – с электронноплотной сердцевиной, светлой каемкой, диаметром 50-80 мкм. Глицинсодержащие и ГАМК-содержащие – имеют овальную форму. Пептидсодержащие – с электронноплотной сердцевиной, светлой каемкой, диаметром 90-120 мкм.

         Механизм передачи возбуждения  в химическом синапсе: импульс, приходящий  по афферентному волокну, вызывает  возбуждение в пресинаптической зоне и приводит к выделению медиатора через пресинаптическую мембрану. Медиатор поступает в синаптическую щель. На постсинаптической мембране имеются рецепторы к нейромедиатору (холинорецепторы для медиатора ацетилхолина; адренорецепторы для норадреналина). В последующем связь медиаторов с рецепторами разрывается. Медиатор либо метаболизируется, либо подвергается обратному всасыванию пресинаптическими мембранами, либо захватывается мембранами астроцитов с последующей передачей медиатора к нервным клеткам.

Регенерация нейронов

Для нейронов характерна только внутриклеточная регенерация. Они являются стабильной популяцией клеток и в обычных условиях не делятся. Но имеются исключения. Так, доказана способность к делению у нервных клеток в эпителии обонятельного анализатора, в некоторых ганглиях (скоплениях нейронов вегетативной нервной системы) животных.

 

 

 

 

 

 

 

 

 

 

 

 

 

НЕЙРОГЛИЯ

Нейроглия — группа клеток нервной ткани, находящиеся между нейронами, различают микроглию и макроглию.

 

Макроглия

Макроглия ЦНС подразделяется на следующие клетки: астроциты (волокнистые и протоплазматические), олигодендроциты и эпендимоциты (в том числе и танициты).

Макроглия периферической нервной системы: сателлитоциты и леммоциты (шванновские клетки).

Функции макроглии: защитная, трофическая, секреторная.

 

         Астроциты – звездчатые клетки, многочисленные отростки которых ветвятся и окружают другие структуры мозга. Астроциты есть только в ЦНС и анализаторах – производных нервной трубки.

Виды астроцитов: волокнистые и протоплазматические астроциты.

Терминали отростков обоих типов клеток имеют пуговичные расширения (ножки астроцитов), большинство из которых заканчивается в периваскулярном пространстве, окружая капилляры и образуя периваскулярные глиальные мембраны.

Волокнистые астроциты имеют многочисленные, длинные, тонкие, слабо или совсем не ветвящиеся отростки. В основном присутствуют в белом веществе мозга.

Протоплазматические астроциты отличаются короткими, толстыми и сильно ветвящимися отростками. Имеются преимущественно в сером веществе мозга. Астроциты располагаются между телами нейронов, немиелинизированной и миелинизированной частями нервных отростков, синапсами, кровеносными сосудами, подэпендимными пространствами, изолируя и в то же время структурно связывая их.

Специфическим маркером астроцитов является глиальный фибриллярный кислый белок, из которого образуются промежуточные филаменты.

Астроциты имеют относительно крупные светлые ядра, со слабо развитым ядрышковым аппаратом. Цитоплазма слабо оксифильная, в ней слабо развита аЭПС и грЭПС, комплекс Гольджи. Митохондрий мало, они небольших размеров. Цитоскелет развит умеренно в протоплазматических и хорошо – в волокнистых астроцитах. Между клетками значительное число щелевидных и десмосомоподобных контактов.

В постнатальный период жизни человека астроциты способны к миграции, особенно в зоны повреждения и способны к пролиферации (из них образуются доброкачественные опухоли астроцитомы).

         Основные функции астроцитов: участие в гематоэнцефалическом и ликворогематическом барьерах (своими отростками покрывают капилляры, поверхности мозга и участвуют в транспорте веществ от сосудов к нейронам и наоборот), в связи с этим выполняют защитную, трофическую, регуляторную функции; фагоцитоз погибших нейронов, секреция биологически активных веществ: ФРФ, ангиогенные факторы, ЭФР, интерлейкин–I, простагландины.

Информация о работе Нервная система