Автор работы: Пользователь скрыл имя, 08 Ноября 2015 в 14:04, реферат
Основой терапевтического действия антибактериальных препаратов является подавление жизнедеятельности возбудителя инфекционной болезни в результате угнетения более или менее специфичного для микроорганизмов (прокариот) метаболического процесса. Угнетение происходит в результате связывания антибиотика с мишенью, в качестве которой может выступать либо фермент, либо структурная молекула микроорганизма.
Появляются данные о том, что аминогликозиды могут подвергаться активному выведению из микробной клетки.
Модификация мишени действия. Основной мишенью действия аминогликозидных антибиотиков является 30S субъединица бактериальной рибосомы, в некоторых случаях устойчивость может быть связана с ее модификацией. Распространение и клиническое значение устойчивости, связанной с модификацией мишени незначительно.
Хинолоны/Фторхинолоны
Модификация мишени действия. Ведущим механизмом устойчивости к хинолонам/фторхинолонам является модификация мишеней - двух бактериальных ферментов ДНК-гиразы и топоизомеразы IV, опосредующих конформационные изменения в молекуле бактериальной ДНК, необходимые для ее нормальной репликации. Каждый из ферментов состоит из четырех субъединиц. ДНК-гираза состоит из двух gyrА и двух gyrB субъединиц (соответствующие гены gyrА и gyrB ). Топоизомераза IV - из субъединиц parC и parE (соответствующие гены parC и parE ). Гены обоих ферментов локализованы на бактериальной хромосоме.
Основой формирования резистентности к хинолонам являются мутации в генах gyrA и parC .
Принципиальным моментом является то, что мутации в одном или двух генах могут накапливаться, что сопровождается ступенчатым снижением сродства ферментов к хинолонам и повышением МПК. Единичные мутации приводят к развитию устойчивости только к нефторированным хинолонам (налидиксовой кислоте и др.) и сопровождаются незначительным с клинической точки зрения повышением МПК (в 2-4 раза) фторхинолонов. Высокий уровень устойчивости грамотрицательных микроорганизмов к фторхинолонам (МПК > 64,0 мг/л) обычно связан с двумя и более мутациями в одном или обоих чувствительных ферментах.
Активное выведение. В последние годы накапливаются данные о широком распространении среди грамположительных и грамотрицательных микроорганизмов устойчивости, связанной с активным выведением хинолонов. У штаммов с высоким уровнем устойчивости к фторхинолонам этот механизм часто сочетается с модификацией мишеней.
В России устойчивость к фторхинолонам (ципрофлоксацину и офлоксацину) является реальной проблемой при лечении нозокомиальных инфекций. Быстрее всего резистентность формируется у штаммов P.aeruginosa . Появляются данные о росте устойчивости к фторхинолонам среди пневмококков.
Макролиды и линкосамиды
Модификация мишени действия. Основной мишенью действия макролидных и линкосамидных антибиотиков является 50S субъединица бактериальной рибосомы. Несмотря на различия в структуре, все эти антибиотики имеют общий участок связывания с рибосомой. У большинства бактерий устойчивость возникает в результате метилирования 23S-субъединицы рРНК. Известно около 20 генов ( erm - erythromycin ribosome methylation), кодирующих фермент метилазу, они ассоциированы с транспозонами и могут локализоваться как на плазмидах, так и на хромосомах. Метилазы широко распространены среди многих аэробных и анаэробных грамположительных и грамотрицательных бактерий.
Описано два варианта синтеза метилазы: конститутивный и индуцибельный. При конститутивном типе синтез фермента не зависит от внешних условий. Соответственно, бактерии проявляют устойчивость ко всем макролидам и линкосамидам. При индуцибельном типе синтеза фермента для его начала необходима индукция. Синтез стрептококковых метилаз индуцируется всеми макролидами и линкосамидами, соответственно микроорганизмы проявляют устойчивость ко всем перечисленным антибиотикам. В отличие от этого, синтез стафилококковых метилаз способен индуцировать только 14- и 15-членные макролиды, соответственно микроорганизмы проявляют устойчивость к перечисленным антибиотикам, но сохраняют чувствительность к 16-членным макролидам и линкосамидам. Таким образом, в клинической практике могут встречаться стафилококки устойчивые как ко всем макролидам и линкосамидам, так и только к 14- и 15-членным макролидам.
У ряда микроорганизмов ( H.pylori , M.avium , M.intracellulare , Propionibacterium spp.) известен и другой механизм модификации мишени для макролидов и линкосамидов - в результате мутаций в 23S-субъединицы рРНК снижается сродство к антибиотикам и формируется клинически значимая устойчивость. При этом механизме наблюдают перекрестную резистентность ко всем макролидам и линкосамидам.
Активное выведение. Активное выведение макролидов и линкосамидов осуществляют несколько транспортных систем. Основное клиническое значение имеет система выведения, кодируемая mef -геном, распространенная среди S.pneumoniae , S.pyogenes и многих других грамположительных бактерий. Соответствующий белок-транспортер выводит 14- и 15-членные макролиды и обеспечивает невысокий уровень резистентности. Значение этого механизма резистентности окончательно не установлено. Линкосамиды и 16-членые макролиды сохраняют активность.
Гены mef локализованы на хромосомах в составе конъюгативных элементов, что обеспечивает достаточно эффективное внутри- и межвидовое распространение.
Ферментативная инактивация. Ферменты, инактивирующие макролиды и линкосамиды, описаны среди грамположительных и грамотрицательных микроорганизмов. Некоторые из них обладают широким субстратным профилем (макролидфосфотрансферазы E.coli и Staphylococcus spp.), другие инактивируют только отдельные антибиотики (эритромицинэстеразы, распространенные среди семейства Enterobacteriaceae , линкомицинацетилтрансферазы стафилококков и энтерококков). Распространение и клиническое значение ферментов, инактивирующих макролидные антибиотики, невелико.
В России устойчивость к макролидам и линкосамидам закономерно распространена среди метициллинорезистентных стафилококков. Среди метициллиночувствительных стафилококков частота устойчивости, как правило, не превышает 10%.
В Европе в последние годы наблюдается тенденция к росту устойчивости к макролидам среди S.pyogenes , S.pneumoniae , что связывают со значительным увеличением объема применения современных макролидов (азитромицина, кларитромицина, рокситромицина) в качестве препаратов первого выбора. Целесообразность такого расширения показаний вызывает дискуссии.
Надежных данных о многолетней динамике устойчивости S.pneumoniae и S.pyogenes к макролидам в России нет. Однако фиксируемый в последние годы уровень частоты устойчивости 8-12%, должен вызывать настороженность.
Тетрациклины
Активное выведение. Этот механизм является наиболее распространенным среди грамотрицательных и грамположительных микроорганизмов. Детерминанты резистентности обычно локализованы на плазмидах, что обеспечивает их быстрое внутри- и межвидовое распространение. Часть генов и соответствующие белки (TetA - TetE) распространены среди грамотрицательных бактерий, другие (TetK, TetL) среди грамположительных.
Защита рибосомы. Известно семейство защитных белков, которые позволяют бактерии синтезировать белок, несмотря на связывание с рибосомой молекулы тетрациклина. Механизм подобной защиты неизвестен. Описано, по меньшей мере, 5 генов, кодирующих защитные белки, они распространены среди грамотрицательных и грамположительных бактерий и детерминируют устойчивость ко всем тетрациклинам.
Частота устойчивости к тетрациклинам среди клинически наиболее значимых микроорганизмов достаточно высока, что не позволяет рассматривать их как средства выбора для лечения большинства инфекций.
Гликопептиды
Модификация мишени действия. Механизм действия гликопептидов заключается в блокировании завершающей стадии синтеза пептидогликана путем связывания молекулы антибиотика с концевыми аминокислотами в боковой пептидной цепочке (D-аланин-D-аланин).
Механизм устойчивости к гликопептидам наиболее детально изучен у энтерококков, он связан с синтезом бактериями модифицированной боковой полипептидной цепи.
Известны три фенотипа устойчивости: VanA, VanB и VanC. Детерминанты устойчивости фенотипа VanA локализуются на плазмидах, а фенотипа VanB - в основном на хромосомах. Для фенотипа VanA характерен высокий уровень устойчивости к ванкомицину и тейкопланину, для VanB - вариабельная резистентность к ванкомицину и чувствительность к тейкопланину. Фенотип VanC характерен для E.gallinarum , E.casseliflavus и E.flavescens , проявляющих природно низкий уровень устойчивости к ванкомицину.
Устойчивость энтерококков к гликопептидам является серьезной проблемой в отделениях интенсивной терапии в США и Западной Европе. Чаще всего устойчивость отмечают у штаммов E.faecium , ее частота может достигать 15-20%. Достоверных данных о выделении ванкомицинорезистентных энтерококков в России нет.
Сообщения о выделении единичных штаммов метициллинорезистентных и метициллиночувствительных S.aureus со сниженной чувствительностью к ванкомицину (GISA) появились в Японии и США только в последние годы. Для штаммов со сниженной чувствительностью характерно утолщение клеточной стенки, уменьшение аутолитической активности. Обсуждается возможность избыточной продукции мишеней действия гликопептидов. Снижение чувствительности к гликопептидам было описано ранее среди коагулазонегативных стафилококков.
На практике при выделении ванкомицинорезистентных энтерококков и стафилококков необходимо проявлять настороженность, тщательно проверять чистоту исследуемой культуры и точность ее идентификации. Так, необходимо иметь в виду, что некоторые грамположительные бактерии обладают природной устойчивостью к гликопептидам: Lactobacillus spp., Leuconostoc spp., Pediococcus spp.
Сульфаниламиды и ко-тримоксазол
Сульфаниламиды и триметоприм блокируют различные этапы одного метаболического пути бактерий - синтез фолиевой кислоты, благодаря чему между ними отмечается выраженный синергизм. Сульфаниламиды, являющиеся структурным аналогом парааминобензойной кислоты, являются конкурентными ингибиторами дигидроптеоратсинтетазы. Триметоприм подавляет активность дигидрофолатредуктазы.
Формирование метаболического шунта. Устойчивость к триметоприму может являться результатом приобретения генов дигидрофолатредуктазы, нечувствительной (или малочувствительной) к ингибиции, а устойчивость к сульфаниламидам - генов дигидроптеоратсинтетазы. Известно несколько типов каждого из устойчивых ферментов, но их происхождение не совсем ясно.
Гены ферментов, устойчивых к ингибированию, часто находятся в составе подвижных генетических элементов (транспозонов) в ассоциации с генами, детерминирующими устойчивость к другим антибиотикам.
Модификация мишени действия. Устойчивость может также сформироваться в результате мутаций в генах указанных ферментов.
Хлорамфеникол
Ферментативная инактивация (ацетилирование) является основным механизмом устойчивости к хлорамфениколу. Гены ферментов - хлорамфениколацетилтрасфераз, как правило, локализуются на плазмидах и входят в состав транспозонов в ассоциации с генами устойчивости к другим антибиотикам.
Полимиксины
Полимиксины оказывают бактерицидное действие на грамотрицательные бактерии, нарушая целостность цитоплазматической мембраны, действуя подобно поверхностно активным веществам. Приобретенная устойчивость отмечается редко.
Нитрофураны
Механизм действия нитрофуранов изучен недостаточно полно. Считается, что приобретенная устойчивость к этим препаратам встречается крайне редко, о ее механизмах можно судить лишь предположительно.
Нитроимидазолы
Нитроимидазолы активируются в микробной клетке ферментом нитроредуктазой, возникающие при этом свободные радикалы, повреждают ДНК бактерий. Устойчивость у подавляющего большинства анаэробных бактерий отмечается крайне редко и не имеет практического значения.
Реальные клинические проблемы возникают при развитии устойчивости у H.pylori , обусловленной инактивацией нитроредуктазы в результате мутаций в соответствующих генах.
МНОЖЕСТВЕННАЯ УСТОЙЧИВОСТЬ, СВЯЗАННАЯ СО СНИЖЕНИЕМ ПРОНИЦАЕМОСТИ
Снижение проницаемости внешних структур бактериальной клетки является наименее специфичным механизмом устойчивости и, обычно, приводит к формированию устойчивости одновременно к нескольким группам антибиотиков.
Чаще всего причиной этого явления становится полная или частичная утрата пориновых белков. Кроме этого, относительно хорошо изучена система MAR (multiple antibiotic resistance - множественная устойчивость к антибиотикам). На фоне применения тетрациклинов или хлорамфеникола формируется устойчивость не только к этим антибиотикам, но и к b-лактамам и хинолонам. Активация MAR системы приводит к одновременному снижению количества одного из пориновых белков (OmpF) и повышению активности одной из систем активного выведения.
Снижение проницаемости за счет утраты или снижения количества пориновых белков встречается в ассоциации с продукцией b-лактамаз расширенного спектра. Утрата одного из пориновых белков (D2) P.aeruginosa приводит к избирательному снижению чувствительности микроорганизма к имипенему.
ЗАКЛЮЧЕНИЕ
В заключение целесообразно коротко суммировать данные о наиболее распространенных механизмах резистентности среди основных клинически значимых микроорганизмов.
Возбудители внебольничных инфекций