Автор работы: Пользователь скрыл имя, 08 Мая 2014 в 20:29, курс лекций
Работа содержит курс лекций по гистологии.
Источники развития кардиомиоцитов — миоэпителиальные пластинки, представляющие собой определенные участки висцеральных листков спланхнотома, а конкретнееиз целомического эпителия этих участков.
Иннервация сердечной мышечной ткани
Биопотенциалы сократительные кардиомиоциты получают из двух источников:
Регенерация сердечной мышечной ткани
Кардиомиоциты регенерируют только по внутриклеточному типу. Пролиферации кардиомиоцитов не наблюдается. Камбиальные элементы в сердечной мышечной ткани отсутствуют. При поражении значительных участков миокарда (в частности, при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубцов (пластическая регенерация). Естественно, что сократительная функция в этих участках отсутствует. Поражение проводящей системы сопровождается нарушением ритма сердечных сокращений.
6. Гладкие мышечные ткани
Подавляющая часть
гладкой мышечной ткани
Структурно-функциональной
единицей гладкой мышечной
Механизм сокращения в миоцитах в принципе сходен с сокращением саркомеров в миофибриллах в скелетных мышечных волокнах. Он осуществляется за счет взаимодействия и скольжения актиновых миофиламентов вдоль миозиновых. Для такого взаимодействия также необходимы энергия в виде АТФ, ионы кальция и наличие биопотенциала. Биопотенциалы поступают от эфферентных окончаний вегетативных нервных волокон непосредственно на миоциты или опосредованно от соседних клеток через щелевидные контакты и передаются через кавеолы на элементы саркоплазматической сети, обуславливая выход из них ионов кальция в саркоплазму. Под влиянием ионов кальция развиваются механизмы взаимодействия между актиновыми и миозиновыми филаментами, аналогичные тем, которые происходят в саркомерах скелетных мышечных волокон, в результате чего происходит скольжение названных миофиламентов и перемещение плотных телец в цитоплазме. В миоцитах, кроме актиновых и миозиновых филаментов, имеются еще промежуточные, которые одним концом прикрепляются к цитоплазматическим плотным тельцам, а другим — прикрепительным тельцам на плазмолемме и таким образом передают усилия взаимодействия актиновых и миозиновых филаментов на сарколемму миоцита, чем и достигается его укорочение.
Миоциты окружены снаружи
рыхлой волокнистой
Эфферентная иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой. При этом, терминальные веточки аксонов эфферентных вегетативных нейронов, проходя по поверхности нескольких миоцитов, образуют на них небольшие варикозные утолщения, которые несколько прогибают плазмолемму и образуют мионевральные синапсы. При поступлении нервных импульсов в синаптическую щель выделяются медиаторы (ацетилхолин или норадреналин), и обуславливают деполяризацию мембран миоцитов и последующее их сокращение. Через щелевидные контакты биопотенциалы переходят из одного миоцита на другой, что сопровождается возбуждением и сокращением и тех гладкомышечных клеток, которые не содержат нервных окончаний. Возбуждение и сокращение миоцитов обычно продолжительны и обеспечивают тоническое сокращение гладкой мышечной ткани сосудов и полых внутренних органов, в том числе гладкомышечных сфинктеров. В этих органах содержатся и многочисленные рецепторные окончания в виде кустиков, деревцев или диффузных полей.
Регенерация гладкой мышечной ткани осуществляется несколькими способами:
7. Специальные гладкомышечные ткани
Нейрального происхождения развиваются из нейроэктодермы, из краев стенки глазного бокала, являющегося выпячиванием промежуточного мозга. Из этого источника развиваются миоциты, которые образуют две мышцы радужной оболочки глаза: мышцу суживающую зрачок и мышцу расширяющую зрачок. По своей морфологии миоциты радужной оболочки не отличаются от мезенхимных миоцитов, однако, отличаются по иннервации. Каждый миоцит получает вегетативную эфферентную иннервацию (мышца расширяющая зрачок — симпатическую, мышца суживающая зрачок —парасимпатическую). Благодаря этому, названные мышцы сокращаются быстро и координировано, в зависимости от мощности светового пучка.
Эпидермального происхождения развиваются из кожной эктодермы и представляют собой не типичные веретеновидные миоциты, а клетки звездчатой формы — миоэпителиальные клетки, располагающиеся в концевых отделах слюнных, молочных, слезных и потовых желез, снаружи от секреторных клеток. В своих отростках миоэпителиальные клетки содержат актиновые и миозиновые филаменты, благодаря взаимодействию которых отростки клеток сокращаются и способствуют выделению секрета из концевых отделов и мелких протоков названных желез в более крупные протоки. Эфферентную иннервацию получают также из вегетативного отдела нервной системы.
ЛЕКЦИЯ 11. Нервная ткань
1. Развитие нервной ткани
2. Структура нейронов
3. Нейроглия
4. Нервные волокна
5. Регенерация нейронов и нервных волокон
6. Рецепторные нервные окончания
1. Значение нервной ткани в организме определяется основными свойствами нервных клеток (нейронов, нейроцитов) воспринимать раздражение, приходить в состояние возбуждения, вырабатывать импульс и передавать его. Нервная ткань осуществляет регуляцию деятельности тканей и органов, их взаимосвязь и связь с окружающей средой.
Нервная ткань состоит из нейроцитов, выполняющих специфическую функцию, и нейроглии, обеспечивающей существование и специфическую функцию нервных клеток и осуществляющей опорную, трофическую, разграничительную, секреторную и защитную функции. Особенностью нервной ткани является полное отсутствие межклеточного вещества.
Нервная ткань развивается
из дорсального утолщения
Нейральными плакодами называются утолщения эктодермы по бокам головы. Они участвуют в формировании ганглиев 5, 7, 9, 10 пар черепных нервов.
Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, представленный вентрикулярными и нейроэпителиальными клетками. Морфологически сходные, вентрикулярные клетки неоднородны по способности к дифференцировке в различные типы клеток зрелой нервной ткани. Часть из них дает начало нейробластам, другая глиальным клеткам: эпендимоцитам, астроцитам и олигодендроглиоцитам. Глиальные клетки на протяжении всей своей жизни, в отличии от нейроцитов, сохраняют высокую пролиферативную активность. По мере дифференцировки нейробласта изменяется субмикроскопическое строение его ядра и цитоплазмы. В ядре возникают участки различной электронной плотности в виде зерен и нитей. В цитоплазме выявляются в большом количестве канальцы и цистерны эндоплазматической сети, уменьшается количество свободных рибосом и полисом, хорошего развития достигает комплекс Гольджи. Специфическим признаком начавшейся специализации нервных клеток следует считать появление в их цитоплазме тонких фибрилл — пучков нейрофиламентов и микротрубочек. Количество нейрофиламентов в процессе специализации увеличивается. Тело нейробласта постепенно приобретает грушевидную форму, а от его заостренного конца начинает развиваться отростокаксон. Позднее дифференцируются другие отросткидендриты. Нейробласты превращаются в зрелые нервные клетки — нейроны. Между нейронами устанавливаются синаптические контакты.
2. Нейроны, или нейроциты, различных отделов нервной системы значительно отличаются друг от друга по функциональному значению и морфологическим особенностям.
В зависимости от функции нейроны делятся на:
Характерной чертой
для всех зрелых нейронов
По функциональному
значению отростки нейронов
Мультиполярные клетки наиболее распространены у млекопитающих животных и человека. Из многих отростков такого нейрона один представлен нейритом, тогда как все остальные являются дендритами. Биполярные клетки имеют два отростка — нейрит и дендрит. Истинные биполярные клетки в теле человека встречаются редко. К ним относятся часть клеток сетчатки глаза, спирального ганглия внутреннего уха и некоторые другие. Однако по существу своего строения к биполярным клеткам должна быть отнесена большая группа афферентных, так называемых псевдоуниполярных нейронов краниальных и спинальных нервных узлов. Псевдоуниполярными они называются потому, что нейрит и дендрит этих клеток начинается с общего выроста тела, создающего впечатление одного отростка, с последующим Т-образным делением его. Истинных униполярных клеток, то есть клеток с одним отростком — нейритом, в теле человека нет.
Нейроны человека в
подавляющем большинстве
В соответствии с
высокой специфичностью
Плазмолемма нейронов, кроме функции, типичной для цитолеммы любой клетки, характеризуется способностью проводить возбуждение. Сущность этого процесса сводится к быстрому перемещению локальной деполяризации плазмолеммы по ее дендритам к перикариону и аксону.
Обилие гранулярной эндоплазма