Космология

Автор работы: Пользователь скрыл имя, 03 Ноября 2014 в 12:35, контрольная работа

Краткое описание

Наука, которая изучает вселенную как единое целое, называется космологией. Большинство существующих космологических теорий опирается на теорию тяготения, физику элементарных частиц, общую теорию относительности и другие фундаментальные физические теории и, конечно, на астрономические наблюдения. В космологии широко используется метод моделирования, ученые строят теоретические модели Вселенной, ищут наблюдательные факты, на основе которых можно проверить правильность теоретических выводов.

Прикрепленные файлы: 1 файл

контр космология.docx

— 30.29 Кб (Скачать документ)

Введение

 

Наука, которая изучает вселенную как единое целое, называется космологией. Большинство существующих космологических теорий опирается на теорию тяготения, физику элементарных частиц, общую теорию относительности и другие фундаментальные физические теории и, конечно, на астрономические наблюдения. В космологии широко используется метод моделирования, ученые строят теоретические модели Вселенной, ищут наблюдательные факты, на основе которых можно проверить правильность теоретических выводов. Применение ЭВМ позволяет проводить необходимые при этом расчеты. Реальная вселенная, как оказалось, хорошо описывается моделями расширяющейся Вселенной.

Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд, звезд и звездных систем — галактик; системы галактик — Метагалактики.

Материя во Вселенной представлена сконденсировавшимися космическими телами и диффузной материей. Диффузная материя существует в виде разобщенных атомов и молекул, а также более плотных образований — гигантских облаков пыли и газа — газово-пылевых туманностей. Значительную долю материи во Вселенной, наряду с диффузными образованиями, занимает материя в виде излучения. Следовательно, космическое межзвездное пространство никоим образом не пусто.

 

 

 

Расширение вселенной

 Первое успешное определение  лучевой скорости галактики по  наблюдению доплеровского смещения  ее спектральных линий было  выполнено в 1912 г. Слайфером в обсерватории Ловелла. Он нашел, что галактика в созвездии Андромеды приближается к Земле со скоростью около 200 км/с. Это удивительный результат, если вспомнить, что большинство звезд движется со скоростями не более 50 км/с. Изучая спектры других галактик, Слайфер нашел, что для большинства из них характерно красное смещение линий, т. е. в отличие от галактики в Андромеде эти галактики скорее всего удаляются, а не приближаются. Смещение спектральных линий снова давало большие скорости. К 1914 г. Слайфер измерил спектры 13 галактик; все они, за исключением двух, удалялись со скоростями около 300 км/с.

 Такие скорости намного  превосходили самые большие скорости, когда-либо измеренные в астрономии. Однако самое удивительное было еще впереди. К 1917 г. были зарегистрированы скорости в 600 км/с, но даже этот рекорд был вскоре превзойден. Интересно прочитать комментарий того времени. Эддингтон писал в 1923 г.:

 «Одной из самых  запутанных проблем космологии  являются огромные скорости спиральных  туманностей. Их лучевые скорости  в среднем составляют около 600 км/с, и в громадном большинстве преобладают скорости удаления от Солнечной системы. Обычно считают, что спиральные туманности - самые удивительные из известных нам сейчас объектов (хотя эта точка зрения и оспаривается некоторыми авторитетами), так что скорее всего именно здесь, чем где-нибудь еще, мы могли бы поискать эффекты, обусловленные общими свойствами Вселенной».

 Эддингтон приводит  затем список лучевых скоростей  спиральных галактик, измеренных  Слайфером к февралю 1922г., и продолжает:

 «Очень поразительно громадное преобладание положительных скоростей (удаление); однако, к сожалению, недостаток наблюдений туманностей в южном полушарии не позволяют сделать окончательное заключение. Если даже южные туманности покажут преобладание положительных скоростей, космологические трудности все же не исчезнут полностью... Нужно будет понять, почему две туманности( в том числе большая туманность Андромеды) приближается к нам с довольно большой скоростью; как раз эти скорости определены исключительно хорошо».

 Это высказывание Эддингтона  напоминает нам, что в то время  не было с определенностью  установлено, что спиральные галактики  лежат вне Млечного Пути. Открытие  Хаббла датируется 1924 г. В дальнейшем  свет на природу слайферовских скоростей был пролит с открытием в 1926-1927 гг. вращения Млечного Пути. Скорость движения Солнца вокруг центра галактики составляет около 250 км/с. Другие объекты в Млечном пути также обращаются вокруг его центра, поэтому их лучевые скорости относительно Солнца значительно меньше 250 км/с. Объекты, находящиеся вне Млечного пути, не участвуют в его вращении, так что скорости галактик нужно исправить за движение Солнца, чтобы узнать их скорости относительно Млечного Пути как целого. Когда эта поправка была внесена, быстрое приближение двух галактик, которое так смущало Эддингтона, значительно замедлилось, но самое интересное, что после исправления скорость приближения галактики в Андромеде оказалась всего лишь около 100 км/с. Таким образом, первая измеренная Слайфером скорость, которая казалась в то время устрашающе большой, не давала представления о тех сюрпризах, которые должны были последовать.

 Значение результатов  Слайфера прояснилось в дальнейшем благодаря важному открытию Хаббла, который показал, что скорости удаления галактик отнюдь не случайны. Исходя из измеренных им расстояний до спиральных галактик, Хаббл В 1929 г. установил, что вплоть до расстояния 6 миллионов световых лет скорости галактик пропорциональны расстояниям до них. На первый взгляд могло бы показаться, что открытие Хаббла восстановило привилегированное положение Млечного Пути. Однако, как вскоре стало ясно, результат Хаббла вовсе не означает , что Млечный Путь является единственным центром разбегания галактик. Напротив закон расширения, в котором скорость прямо пропорциональна расстоянию, означает, что любую галактику можно принять за центр расширения. и при этом будет наблюдаться тот же самый закон разбегания.

 Хаббл считал, что постоянная пропорциональности в его законе разбегания галактик равна приблизительно 500 км/(с·Мпс). Эту шкалу скоростей можно представить более наглядным способом, который объясняет, почему результат Хаббла означает, что 2 миллиона лет назад все галактики находились очень близко друг к другу. Этот результат был поразителен не только сам по себе, но также и потому, что, как считали, возраст Земли и Солнца больше 2 миллиардов лет.

 Конечно, предположение, что Вселенная расширяется все  время с постоянной скоростью, может быть ошибочным. В этом  случае момент, когда галактики  находились в одной области  пространства, мог иметь место  больше, чем 2 миллиарда лет назад. Этот вопрос нельзя решить  без теории расширения. Между  тем многие считали, что время 2 миллиарда лет, которое называется  постоянной Хаббла, имеет фундаментальное  значение для Вселенной в целом.

 Такой вывод может  показаться поспешным, однако последующие  работы, как правило, подтверждали  его. К 1931 г. Хаббл расширил область  справедливости своего закона  с 6 миллионов до 150 миллионов световых  лет. Наконец, благодаря новым измерениям  доплеровского смещения, выполненным  Хьюмассоном, Хаббл достиг расстояний 240 миллионов световых лет, где скорости удаления составляли около 1/7 скорости света. Такова была ситуация, когда Хаббл опубликовал свою книгу «Мир туманностей» в 1936 г.

 С тех пор вступил  в строй 200-дюймовый телескоп в  Маунт-Вилсон и усовершенствованы методы регистрации света, собираемого телескопом. Это позволило определить красные смещения более слабых и удаленных галактик. Однако единственное важное изменение результатов Хаббла связано с большой ошибкой в его шкале расстояний. Постоянную Хаббла теперь принимают равной примерно 10 миллиардам лет. Это значение больше предполагаемых возрастов Земли и Солнца и сравнимо с возрастом старейших звездных скоплений . Таким образом, предположение, что некогда Вселенная была очень плотной, не встречает больше никаких трудностей.

2. Звезды

Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию. Материя во Вселенной представлена сконденсировавшимися космическими телами и диффузной материей. Диффузная материя существует в виде разобщенных атомов и молекул, а также более плотных образований — гигантских облаков пыли и газа — газово-пылевых туманностей. Значительную долю материи во Вселенной, наряду с диффузными образованиями, занимает материя в виде излучения.Следовательно, космическое межзвездное пространство никоим образом непусто.

В недрах звезд при температуре порядка 10 млн град, и при очень высокой плотности атомы находятся в ионизированном состоянии: электроны почти полностью или абсолютно все отделены от своих атомов. Оставшиеся ядра вступают во взаимодействие друг с другом, благодаря чему водород, имеющийся в изобилии в большинстве звезд, превращается при участии углерода в гелий. Эти и подобные ядерные превращения являются источником колоссального количества энергии, уносимой излучением звезд.

Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы — так называемые кратные системы, состоящие из двух, трех, четырех, пяти и больше звезд, обращающихся вокруг общего центра тяжести. Компоненты некоторых кратных систем окружены общей оболочкой диффузной материи, источником которой, по-видимому, являются сами звезды, выбрасывающие ее в пространство и виде мощного потока газа. Звезды объединены также в еще большие группы — звездные скопления, которые могут иметь «рассеянную» или «шаровую» структуру. Рассеянные звездные скопления насчитывают несколько сотен отельных звезд, шаровые скопления — многие сотни тысяч.

3. Галактика

Перечисленные звездные системы являются частями более общей системы — Галактики, включающей в себя помимо звезд и диффузную материю. По своей форме галактики разделяются на три основных типа: эллиптические, спиральные и неправильные. В неправильных галактиках наблюдаются вихревые движения газов и тенденция к вращению, вероятно, ведущие к образованию спиральных ветвей. В настоящее время астрономы насчитывают около 10 млрд галактик.

Большинство галактик имеет эллиптическую или спиралевидную форму. Галактика, внутри которой расположена Солнечная система, является спиральной системой, состоящей приблизительно из 120 млрд звезд. Она имеет форму утолщенного диска. Наибольший диаметр равен 100 тыс. световых лет.

Наша Галактика состоит из звезд и диффузной материи. Ее звезды разделяются различными способами на подсистемы. В ней насчитывается приблизительно 20 тыс. рассеянных и около 100 шаровых скоплений звезд. Кроме того, можно выделить звезды, концентрирующиеся в галактической плоскости и образующие плоскую систему и сферическую форму пространственного распределения звезд, образующую ядро галактики.

По радиоастрономическим наблюдениям сделано заключение, что наша Галактика имеет четыре спиральные ветви. Ближайшей галактической системой является туманность Андромеды, находящаяся от нас на расстоянии 2 700 000 световых лет. Нашу Галактику и туманность Андромеды можно причислить к самым большим из известных в настоящее время галактик.

Галактики, как правило, встречаются в виде так называемых «облаков» или «скоплений галактик». Эти «облака» содержат до нескольких тысяч отдельных систем. Распределение галактик в пространстве указывает на существование определенной упорядоченной системы — Метагалактики. Метагалактика, или система галактик, включает в себя все известные космические объекты.

4. Структура мегамира

 

Для объяснения структуры мегамира наиболее важным является гравитационное взаимодействие. Всякое тело притягивает другое тело, но сила гравитации, согласно закону всемирного тяготения, быстро уменьшается с увеличением расстояния между ними. В газово-пылевых туманностях под действием сил гравитации происходит формирование неустойчивых неоднородностей, благодаря чему диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. Важно отметить, что происходит процесс рождения не отдельной изолированной звезды, а звездных ассоциаций. Образовавшиеся газовые тела притягиваются друг к другу, но не обязательно объединяются в одно громадное тело. Вместо этого они, как правило, начинают вращаться относительно друг друга, и центробежная сила этого движения противодействует силе притяжения, ведущей к дальнейшей концентрации. Звезды эволюционируют от протозвезд, гигантских газовых шаров, слабо светящихся и с низкой температурой, к звездам — плотным плазменным телам с температурой внутри в миллионы градусов. Затем начинается процесс ядерных превращений, описываемый в ядерной физике. Основная эволюция вещества во Вселенной происходила и происходит в недрах звезд. Именно там находится тот «плавильный тигель», который обусловил химическую эволюцию вещества во Вселенной.

Огромная энергия, излучаемая звездами, образуется в результате ядерных процессов, происходящих внутри звезд.

Ассоциации, или скопления звезд, также не являются неизменно или вечно существующими. Через определенное количество времени, исчисляемое миллионами лет, они рассеиваются силами галактического вращения.

Особый теоретический, а также практическим интерес имеет для обитателей Земли вопрос о возникновении космических объектов, имеющих размеры планет.

Отличительной чертой планетоподобных несветящихся тел является величина их массы. Все различия между звездами и планетами являются следствием различия их масс. Особенности планет как объектов мегамира можно понять в рамках общего космогонического процесса, в силу которого вблизи определенных звезд возникает система планет — вращающихся вокруг них темных небесных тел.

5. Солнечная система.

Первые теории происхождения солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П. С. Лапласом. Их теории вошли в науку как некая коллективная космогоническая гипотеза Канта — Лапласа, хотя разрабатывались они независимо друг от друга.  Они утверждали, что Солнечная система образовалась из уже вращающейся газовой туманности.

Началом следующего этапа в развитии взглядов на образование Солнечной системы послужила гипотеза английского физика и астрофизика Дж. X. Джинса. Он предположил, что когда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, преобразовалась в планеты. Однако, учитывая огромное расстояние между звездами, такое столкновение кажется совершенно невероятным. Более детальный анализ выявил и другие недостатки этой теории.

Современные концепции происхождения планет Солнечной системы основываются на том, что нужно учитывать не только механические силы, но и другие, в частности электромагнитные. Эта идея была выдвинута шведским физиком и астрофизиком X. Альфвеном и английским астрофизиком Ф. Хойлом. Считается вероятным, что именно электромагнитные силы сыграли решающую роль при зарождении Солнечной системы. Согласно современным представлениям, первоначальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались небольшие части этого облака. Гравитационная сила стала притягивать остатки газа к образовавшейся звезде — Солнцу, но его магнитное поле остановило падающий газ на различных расстояниях — как раз там где находятся планеты. Гравитационная и магнитные силы повлияли на концентрацию и сгущение падающего газа, в результате чего образовались планеты. Когда возникли самые крупные планеты, тот же процесс повторился в меньших масштабах, создав таким образом системы спутников. Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места.

Информация о работе Космология