Автор работы: Пользователь скрыл имя, 14 Марта 2013 в 09:31, контрольная работа
Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма (сердце, язык, кишечник и др.)
Основные морфологические признаки элементов мышечных тканей – удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов – специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.
Общая типовая характеристика мышечной ткани. Классификация. 3
Гаметогенез позвоночных животных. Характеристика основных периодов. Биологическое значение гаметогенеза. 4
Вакуолярная система клетки, обеспечивающая внутриклеточный синтез и транпорт биополимеров. Поток мембран вакуолярной системы. 6
Список использованной литературы. 13
Федеральное агентство по рыболовству
Федеральное государственное бюджетное образовательное
учреждение
высшего профессионального
Дальневосточный государственный технический
рыбохозяйственный университет
(ФГБОУ ВПО «ДАЛЬРЫБВТУЗ»)
Институт заочного обучения
Контрольная работа по дисциплине
«Общая гистология»
Выполнил студент 3 курса Бельды В.И.
Шифр 101-ВБ-258
Владивосток 2013
Список использованной литературы. 13
Мышечными тканями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма (сердце, язык, кишечник и др.)
Основные морфологические
признаки элементов мышечных тканей
– удлиненная форма, наличие продольно
расположенных миофибрилл и миофиламентов
– специальных органелл, обеспечивающих
сократимость, расположение митохондрий
рядом с сократительными
Специальные сократительные
органеллы – миофиламенты или
миофибриллы обеспечивают сокращение,
которое возникает при
В основу классификации мышечных
тканей положены два принципа –
морфофункциональный и
Классификация мышечной ткани
Поперечнополосатые мышечные ткани. В цитоплазме их элементов миозиновые филаменты постоянно полимеризованы, образуют с актиновыми нитями постоянно существующие миофибриллы, организованные в характерные комплексы – саркомеры. В соседних миофибриллах структурные субъединицы саркомеров расположена на одинаковом уровне и создают поперечную исчерченость. Исчерченные мышцы сокращаются быстрее, чем гладкие.
Гладкие мышечные ткани характеризуются тем, что вне сокращения миозиновые филаменты деполимеризованы. В присутствии ионов кальция они полимеризуются и вступают во взаимодействие с филаментами актина. Образующиеся при этом миофибриллы не имеют поперечной исчерчености.
Нейральный тип мышечных тканей образует расширяющие и суживающие мышцы зрачка. Эпидермальный тип образует сократимые элементы потовых, млечных и слюнных желез. Мезенхимный тип мышечных тканей образует мускулатуру внутренних органов (пищеварительный тракт, кровеносные сосуды, урогенитальный тракт, воздухоносные пути, ресничные мышцы глаза). Сердечные мышцы образуют мускулатуру миокарда сердца, а скелетные мускулатуру тела, начального пищеварительного тракта, глазодвигательные мышцы.
Гаметогенез — это процесс образования половых клеток. Протекает он в половых железах — гонадах (в яичниках у самок и в семенниках у самцов). Гаметогенез в организме женской особи сводится к образованию женских половых клеток (яйцеклеток) и носит название овогенеза. У особей мужского пола возникают мужские половые клетки (сперматозоиды), процесс образования которых называется сперматогенезом.
Развитие половых клеток включает следующие этапы (Рис.1):
Рис.1 Схема гаметогенеза
Вакуолярная система клетки - совокупность одномембранных органелл цитоплазмы. По строению выделяют следующие компоненты вакуолярной системы, различающиеся и по своим функциям: гранулярный эндоплазматический ретикулум, аппарат Гольджи, лизосомы, гладкий эндоплазматический ретикулум (ЭР), пероксисомы. Одномембранные органеллы клетки, составляющие вакуолярную систему, обеспечивают синтез и транспорт внутриклеточных биополимеров и продуктов секреции, выводимых из клетки; поглощение путем фагоцитоза, в том числе в реакциях иммунного ответа; биосинтез липидов, в том числе компонентов мембран, стероидных гормонов и др.; дезактивацию ядов путем окисления до безвредных продуктов; разрушение активных форм кислорода и другое.
Эндоплазматическая сеть была открыта К. Р. Портером в 1945 г. Этот компонент цитоплазмы представляет собой совокупность вакуолей, плоских мембранных мешков или трубчатых образований, создающих как бы мембранную сеть внутри цитоплазмы. Различают два типа — гранулярную и агранулярную, или гладкую, эндоплазматическую сеть.
Гранулярный ЭР на ультратонких срезах представлен замкнутыми мембранами, которые образуют на сечениях уплощенные мешки, цистерны, трубочки.
Ширина полостей цистерн
значительно варьирует в
Гранулярный ЭР бывает представлен редкими разрозненными цистернами или их локальными скоплениями. Первый тип гранулярного ЭР характерен для малоспециализированных клеток или для клеток с низкой метаболической активностью. Скопления гранулярных ЭР являются принадлежностью клеток, активно синтезирующих секреторные белки. Так, в клетках печени и некоторых нервных клетках гранулярная эндоплазматическая сеть собрана в отдельные зоны. В клетках поджелудочной железы гранулярный ЭР в виде плотно упакованных друг около друга мембранных цистерн занимает базальную и околоядерную зоны клетки. Рибосомы, связанные с мембранами эндоплазматической сети, участвуют в синтезе белков, выводимых из данной клетки («экспортируемые» белки). Кроме того, гранулярная эндоплазматическая сеть принимает участие в синтезе белков — ферментов, необходимых для организации внутриклеточного метаболизма, а также используемых для внутриклеточного пищеварения.
Белки, накапливающиеся в полостях ЭР, могут, минуя гиалоплазму, транспортироваться в вакуоли комплекса Гольджи, где они модифицируются и входят в состав либо лизосом, либо секреторных гранул, содержимое которых остается изолированным от гиалоплазмы мембраной. Внутри канальцев или вакуолей гранулярной эндоплазматической сети происходит модификация белков, например связывание их с сахарами (первичное глюкозилирование), и конденсация синтезированных белков с образованием крупных агрегатов — секреторных гранул.
В гранулярном ЭР на его рибосомах происходит синтез мембранных интегральных белков, которые встраиваются в толщу мембраны. Здесь же со стороны гиалоплазмы идет синтез липидов и их встраивание в мембрану. В результате этих двух процессов наращиваются сами мембраны эндоплазматической сети и другие компоненты вакуолярной системы.
Роль гранулярной
Агранулярная (гладкая) эндоплазматическая сеть также представлена мембранами, образующими мелкие вакуоли, трубки, канальцы, которые могут ветвиться, сливаться друг с другом. В отличие от гранулярной эндоплазматической сети на мембранах гладкой эндоплазматической сети нет рибосом. Диаметр вакуолей и канальцев гладкой эндоплазматической сети обычно около 50—100 нм.
Гладкий ЭР возникает и развивается на основе гранулярной эндоплазматической сети. В отдельных участках гранулярной эндоплазматической сети образуются новые липопротеидные мембранные участки, лишенные рибосом. Эти участки могут разрастаться, отщепляться от гранулярных мембран и функционировать как самостоятельная вакуолярная система.
Деятельность гладкой эндоплазматической сети связана с метаболизмом липидов и некоторых внутриклеточных полисахаридов. Гладкая эндоплазматическая сеть участвует в заключительных этапах синтеза липидов. Она сильно развита в клетках, секретирующих такие категории липидов, как стероиды, например, в клетках коркового вещества надпочечников, в сустентоцитах семенников.
Тесная топографическая
связь гладкой
В поперечнополосатых мышечных
волокнах гладкая эндоплазматическая
сеть способна депонировать ионы кальция,
необходимые для функции
Очень важна роль гладкой
эндоплазматической сети в дезактивации
различных вредных для
Аппарат Гольджи при рассмотрении в электронном микроскопе представлен мембранными структурами, собранными вместе в небольших зонах. Отдельная зона скопления этих мембран называется диктиосомой. Таких зон в клетке может быть несколько. В диктиосоме плотно друг к другу (на расстоянии 20—25 нм) расположены 5—10 плоских цистерн, между которыми находятся тонкие прослойки гиалоплазмы. Каждая цистерна имеет переменную толщину: в центре ее мембраны могут быть сближены (до 25 нм), а на периферии иметь расширения — ампулы, ширина которых непостоянна. Кроме плотно расположенных плоских цистерн, в зоне комплекса Гольджи наблюдается множество мелких пузырьков (везикул), которые встречаются главным образом в его периферических участках. Иногда они отшнуровываются от ампулярных расширений на краях плоских цистерн. Принято различать в зоне диктиосомы проксимальный (cis) и дистальный (trans) участки. В секретирующих клетках обычно аппарат Гольджи поляризован: его проксимальная часть обращена к ядру, в то время как дистальная — к поверхности клетки.
В клетках отдельные диктиосомы могут быть связаны друг с другом системой везикул и цистерн, примыкающих к дистальному концу скопления плоских мешков, так что образуется рыхлая трехмерная сеть, выявляемая в световом и электронном микроскопах («транс-сеть» аппарата Гольджи).
Аппарат Гольджи участвует
в сегрегации и накоплении продуктов,
синтезированных в
Информация о работе Контрольная работа по «Общей гистологии»