Химический состав бактериальной клетки

Автор работы: Пользователь скрыл имя, 27 Октября 2014 в 17:21, реферат

Краткое описание

Бактериальная клетка на 80-90% состоит из воды и только 10% приходится на долю сухого вещества. Вода в клетке находится в свободном или связанном состоянии. Она выполняет механическую роль в обеспечении тургора, участвует в гидролитических реакциях. Удаление воды из клетки путем высушивания приводит к приостановке процессов метаболизма, прекращению размножения, а для многих микроорганизмов губительно.

Прикрепленные файлы: 1 файл

Химический состав бактериальной клетки.docx

— 18.16 Кб (Скачать документ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                      Химический состав бактериальной клетки.

Бактериальная клетка на 80-90% состоит из воды и только 10% приходится на долю сухого вещества. Вода в клетке находится в свободном или связанном состоянии. Она выполняет механическую роль в обеспечении тургора, участвует в гидролитических реакциях. Удаление воды из клетки путем высушивания приводит к приостановке процессов метаболизма, прекращению размножения, а для многих микроорганизмов губительно. В то же время особый способ высушивания микроорганизмов в вакууме из замороженного состояния (лиофилизация) обеспечивает сохранение жизнеспособности большинства микроорганизмов. Лиофилизация используется для приготовления проб, пригодных для длительного хранения.

В сухом веществе бактерий 52% составляют белки, 17% - углеводы, 9% - липиды, 16% - РНК, 3% - ДНК и 3% - минеральные вещества.

Белки являются ферментами, а также составной частью клетки, входят в состав цитоплазматической мембраны (ЦПМ) и ее производных, клеточной стенки, жгутиков, спор и некоторых капсул. Некоторые бактериальные белки являются антигенами и токсинами бактерий. В состав белков бактерий входят отсутствующие у человека D-аминокислоты, а также диаминопимелиновая кислота.

Углеводы представлены в бактериальной клетке в виде моно-, ди-, олигосахаров и полисахаридов, а также входят в состав комплексных соединений с белками, липидами и другими соединениями. Полисахариды входят в состав некоторых капсул, клеточной стенки; крахмал и гликоген являются запасными питательными веществами. Некоторые полисахариды принимают участие в формировании антигенов.

Липиды или жиры входят в состав ЦПМ и ее производных, клеточной стенки грамотрицательных бактерий, а также служат запасными веществами, входят в состав эндотоксина грамотрицательных бактерий, в составе ЛПС формируют антигены. В бактериальных жирах преобладают длинноцепочечные (С14-С18) насыщенные жирные кислоты и ненасыщенные жирные кислоты, содержащие одну двойную связь. Сложные липиды представлены фосфатидилинозитом, фосфатидилглицерином и фосфатидилэтаноламином. У некоторых бактерий в клетке находятся воски, эфиры миколовой кислоты. Микоплазмы - единственные представители царства Procaryotae, имеющие в составе ЦПМ стеролы. Остальные бактерии в составе ЦПМ и ее производных не имеют стеролов.

В бактериальной клетке присутствуют все типы РНК: иРНК, транспортная РНК (тРНК), рРНК, менее известная антисенс РНК (асРНК). Молекулы асРНК пока не обнаружены в клетках эукариот. Информация об асРНК записана в хромосоме, в так называемых антисенс-генах. АсРНК принимает активное участие в регуляции различных клеточных процессов, в том числе репликации ДНК бактерий, вирусов, плазмид и танспозонов. асРНК представляет собой короткую молекулу, комплементарную определенному участку иРНК, и, соединяясь с ней, блокирует процесс синтеза белка. При этом в клетке подобные комплексы могут накапливаться, и при диссоциации асРНК и иРНК одновременно начинается синтез белка на большом числе однотипных матриц. Искусственные молекулы асРНК пытаются использовать для борьбы с бактериями за счет угнетения ими синтеза в клетке определенных жизненно важных белков.

Пуриновые и пиримидиновые нуклеотиды - это те строительные блоки, из которых синтезируются нуклеиновые кислоты. Кроме того, пуриновые и пиримидиновые нуклеотиды входят в состав многих коферментов и служат для активации и переноса аминокислот, моносахаров, органических кислот.

 

ДНК выполняет в бактериальной клетке наследственную функцию. Молекула ДНК построена из двух полинуклеотидных цепочек. Каждый нуклеотид состоит из азотистого основания, сахара дезоксирибозы и фосфатной группы.Азотистые основания представлены пуринами (аденин, гуанин) и пиримидинами (тимин, цитозин). Соединение цепей обеспечивается водородными связями между комплементарными азотистыми основаниями: аденина с тимином, гуанина с цитозином. Процентное содержание ГЦ-пар в ДНК определяет степень родства между бактериями и используется при определении таксономического положения бактерий.

Минеральные вещества обнаруживаются в золе, полученной после сжигания клеток. В большом количестве представлены N, S, Р, Са, К, Mg, Fe, Mn, а также микроэлементы Zn, Cu, Co, Ва.

Азот входит в состав белков, нуклеотидов, коферментов. Сера входит в виде сульфгидрильных групп в структуру белков. Фосфор в виде фосфатов представлен в нуклеиновых кислотах, АТФ, коферментах. В качестве активаторов ферментов используются ионы Mg, Fe, Mn. Ионы К и Mg необходимы для активации рибосом. Са является составной частью клеточной стенки грамположительных бактерий. У многих бактерий имеются сидерохромы, которые обеспечивают транспортировку ионов Fe внутрь клетки в виде растворимых комплексных соединений.

 

Классификация бактерий по типам питания и способам получения энергии

 

Основной целью метаболизма бактерий является рост, т.е. координированное увеличение всех компонентов клетки. Поскольку основными компонентами бактериальной клетки являются органические соединения, белки, углеводы, нуклеиновые кислоты и липиды, остов которых построен из атомов углерода, то для роста требуется постоянный приток атомов углерода. В зависимости от источника усвояемого углерода бактерии подразделяют на аутотрофы (от греч. autos - сам, trophe - питание), которые используют для построения своих клеток неорганический углерод, в виде СО2, и гетеротрофы (от греч. heteros - другой), которые используют органический углерод. Легкоусвояемыми источниками органического углерода являются гексозы, многоатомные спирты, аминокислоты, липиды.

 

Белки, жиры, углеводы и нуклеиновые кислоты являются крупными полимерными молекулами, которые синтезируются из мономеров в реакциях поликонденсации, протекающих с поглощением энергии. Поэтому для восполнения своей биомассы бактериям, помимо источника углерода, требуется источник энергии. Энергия запасается бактериальной клеткой в форме молекул АТФ.

 

Организмы, для которых источником энергии является свет, называются фототрофами. Те организмы, которые получают энергию за счет окислительно-восстановительных реакций, называются хемотрофами.

 

Среди хемотрофов выделяют литотрофы (от греч. lithos - камень), способные использовать неорганические доноры электронов (Н2, NH3, H2S, Fe2+ и др.) и органотрофы, которые используют в качестве доноров электронов органические соединения.

 

Бактерии, изучаемые медицинской микробиологией, являются гетерохемоорганотрофами. Отличительной особенностью этой группы является то, что источник углерода у них является источником энергии. Учитывая разнообразие микромира и типов метаболизма, далее изложение материала ограничено рассмотрением метаболизма у гетерохемоорганотрофов.

 

Степень гетеротрофности у различных бактерий неодинакова. Среди бактерий выделяют сапрофиты (от греч. sapros - гнилой, phyton - растение), которые питаются мертвым органическим материалом и независимы от других организмов, и паразиты (от греч. parasites - нахлебник) - гетеротрофные микроорганизмы, получающие питательные вещества от макроорганизма.

 

Среди паразитов различают облигатные и факультативные. Облигатные паразиты полностью лишены возможности жить вне клеток макроорганизма. К ним относятся представители родов Rickettsia, Coxiella, Ehrlichia, Chlamydia и др., размножающиеся только внутри клеток макроорганизма. Факультативные паразиты могут жить и без хозяина и размножаться, так же как и сапрофиты, на питательных средах in vitro, т.е. вне организма.

 

Культивирование бактерий в системах in vitro осуществляется на питательных средах. Искусственные питательные среды должны отвечать следующим требованиям.

 

•  Каждая питательная среда должна содержать воду, так как все процессы жизнедеятельности бактерий протекают в воде.

 

•  Для культивирования гетероорганотрофных бактерий в среде должен содержаться органический источник углерода и энергии. Эту функцию выполняют различные органические соединения: углеводы, аминокислоты, органические кислоты, липиды. Наибольшим энергетическим потенциалом обладает глюкоза, так как она непосредственно подвергается расщеплению с образованием АТФ и ингредиентов для биосинте-

 

тических путей. Часто используется в этих целях пептон - продукт неполного гидролиза белков, состоящий из поли-, олиго- и дипептидов. Пептон также поставляет аминокислоты для построения бактериальных белков.

 

•  Для синтеза белков, нуклеотидов, АТФ, коферментов бактериям требуются источники азота, серы, фосфаты и другие минеральные вещества, в том числе микроэлементы. Источником азота может служить пептон; кроме того, большинство бактерий способны использовать соли аммония в качестве источника азота. Серу и фосфор бактерии способны утилизировать в виде неорганических солей: сульфатов и фосфатов. Для нормального функционирования ферментов бактериям требуются ионы Са2+, Mg2+, Mn2+, Fe2+, которые добавляют в питательную среду в виде солей, чаще всего фосфатов.

 

•  Решающее значение для роста многих микроорганизмов имеет рН среды. Поддерживание определенного рН имеет значение для предотвращения гибели микроорганизмов от ими же образованных продуктов обмена.

 

•  Среда должна обладать определенным осмотическим давлением. Большинство бактерий способны расти на изотоничных средах, изотоничность которых достигается добавлением NaCl в концентрации 0,87%. Некоторые бактерии не способны расти на средах при концентрации соли в них ниже 1%. Такие бактерии называются галофильными. Так как устойчивость к осмотическому давлению определяется наличием у бактерий клеточной стенки, бактерии, лишенные клеточной стенки, микоплазмы L-формы, могут расти на питательных средах, содержащих гипертонический раствор, обычно сахарозы. При необходимости к питательной среде добавляют факторы роста, ингибиторы роста определенных бактерий, субстраты для действия ферментов, индикаторы.

 

•  Питательные среды должны быть стерильными.

 

В зависимости от консистенции питательные среды могут быть жидкими, полужидкими и плотными. Плотность среды достигается добавлением агара.

 

Агар - полисахарид, получаемый из водорослей. Он плавится при температуре 100 °С, но при охлаждении остывает при температуре 45-50 °С. Агар добавляют в концентрации 0,5% для полужидких сред и 1,5-2% для создания плотных сред. В зависимо-

 

сти от состава и цели применения различают простые, сложные, элективные, минимальные, дифференциально-диагностические и комбинированные среды.

 

По составу питательные среды могут быть простыми и сложными. К простым средам относятся пептонная вода, питательный бульон, мясопептонный агар. На основе простых сред готовят сложные среды, например сахарный и сывороточный бульоны, кровяной агар.

 

В зависимости от назначения среды подразделяются на элективные, обогащения, дифференциально-диагностические. Под элективными понимают среды, на которых лучше растет какой-то определенный микроорганизм. Например, щелочной агар, имеющий рН 9,0, служит для выделения холерного вибриона. Другие бактерии, в частности кишечная палочка, из-за высокого рН на этой среде не растут.

 

Среды обогащения - это среды, которые стимулируют рост какого-то определенного микроорганизма, ингибируя рост других. Например, среда, содержащая селенит натрия, стимулирует рост бактерий рода Salmonella, ингибируя рост кишечной палочки.

 

Дифференциально-диагностические среды служат для изучения ферментативной активности бактерий. Они состоят из простой питательной среды с добавлением субстрата, на который должен подействовать фермент, и индикатора, меняющего свой цвет в результате ферментативного превращения субстрата. Примером таких сред являются среды Гисса, используемые для изучения способности бактерий ферментировать сахара.

 

Комбинированные питательные среды сочетают в себе элективную среду, подавляющую рост сопутствующей флоры, и дифференциальную среду, диагностирующую ферментативную активность выделяемого микроба. Примером таких сред служат среда Плоскирева и висмут-сульфитный агар, используемые при выделении патогенных кишечных бактерий. Обе эти среды ингибируют рост кишечной палочки.


Информация о работе Химический состав бактериальной клетки