Автор работы: Пользователь скрыл имя, 06 Апреля 2014 в 14:22, реферат
Хромосомные болезни развиваются вследствии того, что изменение количества вещества какой-то части генетической информации в сторону её избытка или недостатка расстраивает ход нормальной реализации генетической программы развития. Существенно именно несбалансированное изменение генетической информации.
Карагандинский государственный медицинский университет
Кафедра молекулярной биологии и медицинской генетики
СРС на тему:
Генетика пола человека
Выполнил: Куч П.
142 группа ОМФ
Проверила: Рогова Н.Р
Караганда 2010 г.
Содержание:
1)Хромосомная детерминация
2)Роль Y-хромосомы в детерминации пола у человека
3)Вторичная детерминация пола у человека
Хромосомные болезни развиваются вследствии того, что изменение количества вещества какой-то части генетической информации в сторону её избытка или недостатка расстраивает ход нормальной реализации генетической программы развития. Существенно именно несбалансированное изменение генетической информации.
Избыток хромосомного материала при триплоидии огромен, однако его увеличение пропорционально при всех составных частях. И у триплоидного жоворождённого организма пороки развития выражены относительно слабо. И эти пороки, и гибель таких организмов обусловлены аномалиями формирования плаценты.
При трисомиях или моносомиях любого типа можно выделить три вида генетических эффектов: специфические, полуспецифические и неспецифические.
СПЕЦИФИЧЕСКИЕ: связаны с изменением содержания структурных генов, кодирующих определённые специфические белки. Выяснение таких эффектов зависит от определения локализации отдельных генов в конкретных хромосомах и их участках, а также необходимо уметь с точностью определять активность соответствующих белков или иных ферментов организма.
ПОЛУСПЕЦИФИЧЕСКИЕ: эффекты, обусловленные изменением содержания таких генов, которые содержатся в многочисленных копиях и контролируют ключевые этапы метаболизма клетки, важные для её деления, миграции и других форм поведения. К этим генам относятся гены рибосомных и транспортных РНК, гистоновых и рибосомных белков, сократительных белков: актина,тубулина и других.
Каковы фенотипические эффекты их дисбаланса сказать пока трудно. Они являются важнейшими в изучении этого вопроса на человеке.
НЕСПЕЦИФИЧЕСКИЕ: связаны с изменённым содержанием гетерохроматина в клетке. Генетическая роль гетерохроматинав конкретных понятиях действия гена изучена полностью. Однако, многочисленные наблюдения, накопленные при изучении эффектов дисбаланса по гетерохроматину на многих биологических видах, дают основание говорить о важной роли гетерохроматина для нормального протекания делений клеток и клеточного роста. Также гетерохроматин необходим для нормального формирования в онтогенезе количественных признаков, определяемых полигенно (рост, длина конечностей, размер тела).
Выяснению полуспецифических и неспецифических эффектов генного дисбаланса при хромосомных болезнях помогает изучениефенотипа на клеточном уровне. Исследования показали, что клеточные характеристики при хромосомных болезнях могут меняться. Из этого следует, что существует общий для многих трисомий “клеточный синдром”. Этот синдром как раз и включает отклонения в параметрах клеточной репродукции.
Следствием отклонений в фенотипе клетки могут стать наруженные межклеточные взаимодействия, важные для нормального морфогенеза.
Полисомии по половым хромосомам очень разнообразны. Они отличаются числом лишних хромосом, их типом и перекомбинациями. Частота Х и Y-полисомий в популяции, если её определять на основании хромосомного исследования, составляет 2:1000. Подавляющая часть Х и Y-полисомий приходится на трисомии: ХХХ, ХХY, ХYY.
Х-полисомии при отсутствии Y-хромосомы.
При хромосомном обследовании группы новорождённых девочек частота наиболее распространённого варианта X-полисомий – Х-трисомий составляет 1,3:1000.
Заподозрить у больных Х-трисомию по фенотипу невозможно. У больных с кариотипом 47ХХХ нормальное умственное и физическое развитие, нормальная плодовитость, половое развитие без отклонений. Однако риск хромосомных нарушений у детей таких больных повышен. Соматические аномалии обнаруживаются при тчательном обследовании почти у всех таких больных, но они выражены слабо, касаются отдельных органов и не служат поводом для обращения к врачу-специалисту. Интеллектуальное развитие нормальное, но в пределах нижней границы нормы. Больные намного чаще страдают шизофринией. С увеличением числа лишних Х-хромосом в хромосомном наборе частота и степень отклонений от нормы нарастают, однако даже больные с тетросомией и пентосомией могут быть уже умственно неполноцеными, иметь черепно-лицевые дисморфии, аномалии зубов, скелета, различные отклонения в системах организма.
Синдром Клайнфельтера. Страдают только женщины. Синдром характеризуется мужской конституцией, но часто имеющей явные или скрытые признаки гепоандризма (скудный волосяной покров, слабо развитая мускулатура, евнуховидные пропорции). Встречается односторонняя или двусторонняя гинекомастия. Половые органы отрафированы, наблюдается бесплодие.
Х-моносомии. Моносомии по всей Х-хромосоме или какой-то её составной части, которая лежит в основе полового недоразвития у женщин. Суммарная частота Х-моносомии составляет 0,7:1000 новорождённых девочек.
Детерминация пола у человека контролируется целым рядом генов, локализованных как на половых хромосомах, так и на аутосомах. Чрезвычайно важно, что зачатки гонад у эмбриона (называемые половыми валиками) до шестинедельного возраста развиваются как индифферентные, т.е. бипотенциальные образования. Первичные половые клетки (гоноциты), выявляемые у эмбриона с 14-го дня развития, мигрируют через энтодерму желточного мешка в область будущих зачатков гонад и в результате митотического деления формируют там пул половых клеток. Для начальных этапов развития гонады наличие в ней гоноцитов не является строго обязательным; от наличия или отсутствия первич] (ых половых клеток не зависит также окончательная дифференцировка гонад по мужскому типу. Но завершенная дифференцировка яичников при отсутствии первичных половых клеток либо нарушена, либо вовсе не происходит.
Результатом первичной детерминации пола является формирование из недифференцированной ткани гонады либо яичек, либо яичников, причем и тот, и другой процесс активно контролируется группой генов, кодирующих транскрипционные факторы,
Решающую роль в становлении пола у человека, как и вообще у всех млекопитающих, играет Y-хромосома: в случае ее отсутствия или отсутствия в ее составе детерминирующих пол генов дальнейшая дифференцировка происходит по женскому пути независимо от числа Х-хромосом.
Y-хромосома человека содержит всего лишь 1,6% ДНК гаплоидного генома, тем не менее к настоящему времени на ней идентифицированы 92 гена, характеризующихся голандрнчеким типом наследования. Моногенные заболевания человека с установленным фактом прямой передачи признака от отца к сыну описаны в части II. Медицинская генетика. Из всей совокупности Y-хромосомных генов пока лишь для отдельных представителей выявлены те звенья формирования и функционирования мужской репродуктивной системы, которые детерминируются ими. Один из наиболее изученных генов Y-хромосомы человека — локализованный в дистальной части ее короткого плеча (Ypll.31-32), одноко-пийный ген SRY (от англ. sex-determining region Y).
Известно, что длина этого гена - т.п.н.,он не содержит интронных последовательностей, в его составе есть GC-богатая промоторная область длиной 310 п.н. и открытая рамка считывания из 612 п.н. Ген SRY млекопитающих кодирует белок (транскрипционный фактор из 204 аминокислот), который имеет ДНК-связывающий домен с консервативным участком из 79 аминокислотных остатков. Этот участок, так называемый HMG-бокс (от англ. high mobility group), может специфически связываться с регуляторными последовательностями ДН К (в частности, в области промоторов генов, детерминирующих половую дифференцировку), что вызывает изгиб молекулы. Такие изменения, происходящие в сайтах, являющихся мишенями для SRY, облегчают связывание транскрипционных регуляторов в непосредственно прилегающих областях. Пока точно не установлены гены, транскрипция которых регулируется SRY, достоверно известно лишь, что распознающий его сайт есть в промоторе гена АМН (от англ. anti-mullerian hormone).
Экспериментально показано, что именно ген SRY играет роль тестис-определяющего фактора TDF (от англ. testis-determiningfactor). У человека его экспрессия обнаруживается уже на стадии зиготы, у мыши - на 10,5 день после оплодотворения. Ген может быть делегирован (утрачен) или транслоцирован (перемешен) с Y- на Х- или другую хромосому в профазе мейоза, в результате чего в потомстве появятся XY-женшины или ХХ-мужчины. Для последних характерен мужской фенотип при женском кариотипе (46,ХХ) и различные пороки развития: гипоплазия яичек, нарушения сперматогенеза, гинекомастия (развитие молочных желез по женскому типу). У XY-женщин наблюдается дисгенезия гонад, гипоплазия внутренних половых органов, а также феминизация пропорций тела вообще и наружных гениталий в частности.
Локусу AZF (от англ. azoospermia factor), расположенному в длинном плече Y-xpoмосомы (Yqll), принадлежит значительная роль в генетической регуляции сперматогенеза у человека. Мутации генов этого локуса: AZfa, AZFb uAZFc приводят к нарушению сперматогенеза от снижения его активности (олигозооспермия) до полного отсутствия (азооспермия).
В длинном плече Y-хромосомы картирован ген, контролирующий продукцию белка клеточных мембран — H-У-антиген гистосовместимости. Ранее и его считали главным фактором дифференцировки пола у человека, так как он репрессирован у индивидов, не имеющих в кариотипе Y-хромосомы. В настоящее время появились данные, ставящие под сомнение роль H-Y-антигена в формировании мужских гонад.
Под контролем другого гормона (андрогена) - тестостерона в ходе вторичной детерминации из вольфовых протоков формируются мужские внутренние половые протоки: средняя часть протоков удлиняется и преобразуется в семявыносящие канальцы. Кроме того, под влиянием тестостерона индуцируется развитие семенных пузырьков и придатка яичка (эпидидимиса). В мочеполовом синусе тестостерон превращается в 5а-дегидротестостерон, при участии которого формируются наружные половые органы; половой член, простата и мошонка. Оба гормона оказывают как местное, гак и общее воздействие, маскулинизируя экстрагенитальные ткани-мишени и обусловливая половой диморфизм центральной нервной системы, внутренних органов и размеров тела.
В случае нарушения биосинтеза андрогенов развиваются отклонения от нормального мужского фенотипа, степень которых может варьировать от легкой гипоспадии (низко расположенного наружного отверстия мочеиспускательного канала) и/или крипторхизма до выраженного женского фенотипа. Сущестпенно, что для нормального развития мужских половых органов необходим не только достаточный уровень андрогенов, но и нормально функционирующие андрогено-вые рецепторы. В отсутствие рецепторов развиваются различные варианты так называемого синдрома нечувствительности к андрогенам (AIS). Андрогеновый рецептор кодируется геном AR, локализованным в Х-хромосоме влокусе ql 1. В его восьми экзонах обнаружено более 200 различных мутаций, среди которых наиболее часто встречаются точковые.
Замена даже одного нуклеотида
может приводить к серьезному нарушению
функции андрогенового рецептора вплоть
до полной его инактивации.
Активация в клетках Лейдига биосинтеза
тестостерона, необходимого для дифференцировки
органов половой системы по мужскому типу
происходит под действием транскрипционного
активатора, кодируемого геном SFI (от англ.
steroidogenic factor I), который локализован в длинном
плече хромосомы 9 (9q33). Кроме того, предполагается,
что ген SFI регулирует экспрессию гена
DAXI, так как в промоторе последнего обнаружен
распознающий SFI-сшг, т.е. по отношению
к DAXI ген SF1 выступает в качестве «вышестоящего».
В свою очередь DAX1 может быть супрессором
в отношении гена SF1. Возможно, в процессе
морфогенеза яичников ген DAXI предотвращает
транскрипцию гена SOX9 через репрессию
транскрипции гена SF1. Имеющиеся данные
говорят о детерминирующей роли гена SF1
в дифференцировке эндокринных органов,
регулирующее действие которых на морфогенез
половой системы начинается после завершения
ранних этапов дифференцировки гонад.
Кроме описанных выше гормонов, во вторичной детерминации пола у млекопитающих и, в частности, у человека, важную роль играют эстрогены и их рецепторы. Нормальная функция эстрогенов необходима для формирования репродуктивной системы как у женщин, так и у мужчин. Причем у последних эстрогены участвуют в созревании костной ткани и обеспечении определенных качественных показателей сперматозоидов. «Выключение» эстрогеновых рецепторов вызывает у модельных животных (мышей) гипоплазию матки и яичников в сочетании с развитием бесплодия.
Таким образом, в окончательном формировании наружных гениталий решающую роль играют андрогены — мужские половые гормоны, продуцирующиеся в надпочечниках и в яичках. Если их влияние отсутствует либо недостаточно, наружные половые органы формируются по женскому типу независимо от наличия или отсутствия эстрогенов.
Количество уже сейчас известных генов, вовлеченных в развитие и функционирование органов репродуктивной системы, чрезвычайно велико. Для яичка (как и для простаты) оно составляет более 1200, для яичника -более 500, для матки - более 1800 генов. Анализ функциональных взаимоотношений даже небольшой части наследственных детерминант, включенных в формирование пола у человека, позволяет получить представление о многоплановом их взаимодействии в данном процессе, который нельзя представить как цепь последовательных событий, подобную описанной выше у дрозофилы, По мнению ряда исследователей, процесс взаимодействия генетических регуляторов половой дифференцировки у человека, скорее всего, можно сравнить с сетью, где действие всех генов взаимосвязано и взаимообусловлено.
Рассматривая проблемы детерминации пола у человека, мы затронули лишь надводную часть «айсберга», каковым представляется чрезвычайно сложный процесс становления пола. Он может быть продемонстрирован схемой уровней дифференцировки пола, предложенной в 1990 г. Г.С. Васильченко.
Нарушение процесса формирования каждого из обозначенных уровней может стать у человека причиной отклонений в становлении половой идентичности.
Использованная литература:
1)Бочков Н.П. Клиническая генетика. М.: Медицина, 1997.
2)Фогель Ф., Мотульски А. Генетика человека. М.: Мир, 1990. (в 3-х т.)
3)Айала Ф., Кайгер Дж. Современная генетика. М.: Мир, 1988. (в 3-х т.)
4)Баев А.А. (ред.). Геном человека, ВИНИТИ, т. 1. М., 1990.