Автор работы: Пользователь скрыл имя, 18 Декабря 2011 в 15:37, реферат
Простые белки построены из остатков аминокислот и при гидролизе распадаются соответственно только на свободные аминокислоты.
Сложные белки – это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого про-стетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождается небелковая часть или продукты ее распада.
Простые белки построены из остатков аминокислот и при гидролизе распадаются соответственно только на свободные аминокислоты.
Сложные белки – это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого про-стетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождается небелковая часть или продукты ее распада.
Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп: протамины, гистоны, альбумины, глобулины, проламины, глютелины и др. Классификация сложных белков основана на химической природе входящего в их состав небелкового компонента. В соответствии с этим различают фосфопротеины (содержат фосфорную кислоту), хромопротеины (в состав их входят пигменты), нуклеопротеины (содержат нуклеиновые кислоты), гликопротеины (содержат углеводы), липопротеины (содержат липиды) и металлопротеины (содержат металлы).
Первичная структура — полипептидная цепь из аминокислот, связанных в определенной последовательности прочными пептидными связями (возникающими между аминогруппой одной аминокислоты и карбоксильной группой другой). В результате образуется длинная полипептидная цепь.
Вторичная
структура — полипептидная
Третичная структура — представляет собой причудливую, но для каждого белка специфическую конфигурацию — глобулу (клубок), в которой переплетаются участки белковой цепи.
Четвертичная структура — типична не для всех белков. Она возникает при соединении нескольких макромолекул, образующих агрегаты. Например, гемоглобин крови представляет агрегат из четырех макромолекул белка.
Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам.
Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных нитей. Ее мономерами служат нуклеотиды. Каждый нуклеотид — химическое соединение, состоящее их трех веществ: азотистого основания, пятиатомного сахара дезоксирибозы и остатка фосфорной кислоты.
Фосфорная кислота и углевод (дезоксирибоза) у всех нуклеотидов одинаковы, а азотистые основания бывают четырех типов: аденин, гуанин, цитозин и тимин. Они и определяют название соответствующих нуклеотидов: адениловый (А), гуаниловый (Г), тимидиловый (Т) и цитидиловый (Ц).
Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов.
Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством водородных связей. Аденин-тимин образуют две водородные связи, гуанин-цитозин соединяются тремя водородными связями.
Способность к избирательному взаимодействию аденина с тимином, а гуанина с цитозином, основанная на особенностях расположения в пространстве атомов этих молекул, называется комплементарностъю (дополнительностью). Это объясняется тем, что А и Т и Г и Ц строго соответствуют друг другу, как две половинки разбитого стекла, дополняют друг друга, отсюда и название комплементарность (от греч. «комплемент» — дополнение).
Если известно расположение нуклеотидов в одной цепи, то по принципу комплементарности можно определить порядок нуклеотидов во второй цепи. Например, если последовательность нуклеотидов в одной цепи будет А—А—А—Ц—Т—Т—Г—Г—Г, то на соответствующем участке второй цепи последовательность нуклеотидов обязательно будет следующей: Т-Т-Т—Г-А—А-Ц-Ц-Ц.
Соединяются комплементарные нуклеотиды водородными связями. Удвоение молекулы ДНК — ее уникальная способность, обеспечивающая передачу наследственной информации от материнской клетки дочерним.
Этот процесс получил название редупликации ДНК. Он осуществляется следующим образом. Незадолго перед делением клетки молекула ДНК раскручивается, и ее двойная цепочка под действием фермента с одного конца расщепляется на две самостоятельные цепи. На каждой половине из свободных нуклеотидов клетки, по принципу комплементарности, выстраивается вторая цепь. В результате вместо одной молекулы ДНК возникают две совершенно одинаковые молекулы. Таким образом, процесс редупликации обеспечивает точное копирование информации и передачу ее из поколения в поколение.
ДНК называют
веществом наследственности, так
как биологическая
Различные комбинации трех смежных нуклеотидов образуют триплеты, называемые кодонами.
Рибонуклеиновая кислота
Первичная структура белка – последовательность чередования аминокислотных остатков (все связи ковалентные, прочные) (рис. 1).
Рис. 1. Первичная структура белка |
Вторичная структура – форма полипептидной цепи в пространстве. Белковая цепь закручена в спираль (за счет множества водородных связей) (рис. 2).
Рис. 2. Вторичная структура белка |
Третичная структура – реальная трехмерная конфигурация, которую принимает в пространстве закрученная спираль (за счет гидрофобных связей), у некоторых белков – S–S-связи (бисульфидные связи) (рис. 3).
Рис. 3. Третичная структура белка |
Четвертичная структура – соединенные друг с другом макромолекулы белков образуют комплекс (рис. 4).
Рис. 4. Четвертичная структура белка |
Химические свойства белков
При нагревании белков и пептидов с растворами кислот, щелочей или при действии ферментов протекает гидролиз. Гидролиз белков сводится к расщеплению полипептидных связей:
Рибонуклеиновая кислота — РНК — полимер, по структуре сходный с одной цепочкой ДНК, но значительно меньших размеров. Мономерами РНК являются нуклеотиды» состоящие из фосфорной кислоты углевода (рибозы) и азотистого основания. Три азотистых основания РНК — аденин, гуанин и цитозин — соответствуют таковым ДНК, а вместо тимина в РНК присутствует урацил. Образование биополимера РНК происходит через ковалентные связи между рибозой и фосфорной кислотой соседних нуклеотидов.
Известны три вида РНК: информационная РНК (и-РНК) передает информацию о структуре белка с молекулы ДНК, транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка и рибосомная РНК (р-РНК) — содержится в рибосомах, участвует в поддержании структуры рибосомы.
Учитель биологии. Функции белков разнообразны.
1.
Строительный материал – белки
участвуют в образовании оболочки клетки,
органоидов и мембран клетки. Из белков
построены кровеносные сосуды, сухожилия,
волосы.
2.
Каталитическая роль –
все клеточные катализаторы – белки (активные
центры фермента). Структура активного
центра фермента и структура субстрата
точно соответствуют друг другу, как ключ
и замок.
3.
Двигательная функция –
сократительные белки вызывают всякое
движение.
4.
Транспортная функция –
белок крови гемоглобин присоединяет
кислород и разносит его по всем тканям.
5.
Защитная роль –
выработка белковых тел и антител для
обезвреживания чужеродных веществ.
6.
Энергетическая функция –
1 г белка эквивалентен 17,6 кДж.
Содержание белков
в различных тканях человека неодинаково.
Так, мышцы содержат до 80% белка, селезенка,
кровь, легкие – 72%, кожа – 63%, печень –
57%, мозг – 15%, жировая ткань, костная и
ткань зубов – 14–28%.
Белки – необходимые компоненты пищевых
продуктов, они входят в состав лекарственных
препаратов.
Учитель
биологии. Человек
в течение длительного времени потреблял
белки, выделенные главным образом из
растений и животных. В последние десятилетия
ведутся работы по искусственному получению
белковых веществ. Половина земного шара
находится в состоянии белкового голодания,
а мировая нехватка пищевого белка составляет
около 15 млн т в год при норме потребления
белка в сутки взрослым человеком 115 г.
(Демонстрация фрагмента
2-й части кинофильма
«Белки, строение белковых
молекул» – о сборке
молекулы белка.)
Липиды, их состав и функции
Липиды - жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Дикими принадлежат к простейшим биологическим молекулам.
В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры. Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре жиры называют триацилглицеролами.
Когда жиры гидролизуются (т.е. расщепляются из-за внедрения H+ и OH- в эфирные связи), они распадаются на глицерол и свободные высшие карбоновые кислоты, каждая из которых содержит четное число атомов углерода:
Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями. Среди предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят:
среди непредельных:
Степень ненасыщенности и длина цепей высших карбоновых кислот (т.е. число атомов углерода) определяет физические свойства того или иного жира.
Жиры с
короткими и непредельными
Различают:
Фосфолипиды — амфифильные соединения, т. е. имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны (растворимы в воде), а неполярные хвостовые группы гидрофобны (нерастворимы в воде):
Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.
Воска — сложные эфиры адноатомных (с одной гидроксильной группой) высокомолекулярных (имеющих длинный углеродный скелет) спиртов и высших карбоновых кислот.
Еще одну группу липидов составляют стероиды. Эти вещества построены на основе спирта холестерола. Стероиды очень плохо растворимы в воде и не содержат высших карбоновых кислот.
К ним относятся желчные кислоты, холестерол, половые гормоны, витамин D и др.
К стероидам близки терпены (ростовые вещества растений — гиббереллины; фитол, входящий в состав хлорофилла каротиноиды — фотосинтетичские пигменты; эфирные масла растений — ментол, камфора и др.).